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Abstract 

Aiming at modeling the cavitation bubble cluster, we propose a novel nonlinear 

dynamic cavitation model (NDCM) considering the second derivative term in 

Rayleigh-Plesset equation through strict mathematical derivation. There are two 

improvements of the new model: i) the empirical coefficients are eliminated by 

introduction of the nonuniform potential functions of 𝜓𝑣  and 𝜓𝑐  for growth and 

collapse processes respectively, and ii) only two model parameters are required, which 

both base on physical quantities – the Blake critical radius 𝑅𝑏  and the average 

maximum growth radius 𝑅𝑚. The corresponding cavitation solver was developed by 

using OpenFOAM in which we implemented the modified momentum interpolation 

(MMI) method to ensure that the calculated results are independent of time step size. 

Three validation cases, namely numerical bubble cluster collapse, ultrasonic horn 

experiment, and hydrodynamic cavitation around slender body are employed. The 

results indicate that 𝜓𝑣  and 𝜓𝑐  can reveal the nonlinear characteristics for cavity 

accurately, and 𝑅𝑏 and 𝑅𝑚 can reflect the relevance between cavitation model and 

actual physical quantities. Moreover, it is discussed the potentiality of NDCM that is 

generally applied on the cavitating flow possessing with dispersed bubbly cloud. 
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Highlights 

➢ A nonlinear dynamic cavitation model (NDCM) is established through strict 

mathematical derivation. 

➢ The formula of NDCM employs the potential functions of 𝜓𝑣 and 𝜓𝑐 instead on 

empirical coefficients to describe the nonlinear effects. 

➢ The model parameters of 𝑅𝑏  and 𝑅𝑚  represent the physical characteristics of 

bubble cluster. 

➢ The NDCM is best valid for the cavitating flows with dispersed bubbles. 

 

1. Introduction 

Cavitation often occurs in liquid flows when the ambient pressure drops below a 

certain threshold. The cavitating bubbles will emerge gradually from “cracked” liquid 

medium at its weak points [1]. Individual bubbles cluster and form a complex two-

phase mixture cloud, which shape depends strongly on the structure of the flow field. 

The cavitation bubble cluster exhibits many unique characteristics, such as strong 

collapse accompanied by a shockwave, or the natural frequency far lower than single 

bubble’s etc. [2, 3] There are many researches on single bubble dynamics which can be 

described by Rayleigh-Plesset type equation [4, 5]. However, an approach to build 

cavitation model based on Rayleigh-Plesset equation to investigate the dynamics of 

bubble cluster can be considered questionable. 

Numerical simulation of cavitating flows and specifically the development of 

transport equation model (TEM) has received enormous attention from investigators in 

recently years. Instead of potential flow theory implemented in early engineering 

applications, the Eulerian's one field formulation (OFM) of the two-phase Navier–

Stokes equation [6-9], which combines the properties of each phase as a single mixed 

one, is popularly applied as the methodology of multiphase model. The cavitation 

model for bubble cluster is embedded into the convective phase equation as source 

terms. There is also an alternative approach based on Eulerian–Lagrangian method [10, 

11] but is not within the present framework. 

The prototype of TEM was introduced by Kubota [12] who assumed that the bubble 

nuclei are uniformly distributed in the flow, and the simplified Rayleigh-Plesset 

equation, which considered the SGS bubble interaction was used to determine the 

change of radius and consequently the mixture density in each computational cell. The 

advantage of this approach is that the dynamic response of local equilibrium bubbles 

can be estimated precisely. However, solving the nonlinear transport equation often 

faces the difficulty of convergence and its application was merely limited in studying 

steady flow. 

In order to develop the Kubota’s method, the modeling strategy was focused on larger 

scale of bubble cloud rather than the tiny scale of individual bubbles. A different 
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approach with the same form of transport equation models had already been proposed 

in literature [6-9], in which the nonlinear ODE is replaced by a convective equation of 

void fraction. The mass transfer rate of bubbles is contained implicitly into source terms. 

It has the advantage that the convective character of equation is more appropriate for 

describing the topological evolution of bubble cluster particularly in unsteady situations. 

In the literature, there are two main approaches to build the empirical phase-transition 

laws associating with surrounding pressure. Merkel et al. [13-15] proposed simplest 

formulation based on dimensional analysis that defined the characteristic velocity 𝑢∞ 

or temporal scale 𝑡∞. However, these parameters are prescribed as a constant during 

the whole dynamic period, especially in collapsing process, which would cause large 

deviation. In order to make the model more physical, the void fraction was regarded 

equivalently as a group of identical bubbles. Schnerr et al. [16-19] simplified the 

Rayleigh-Plesset equation that only the linear part was used to redefine the velocity 

scale as √2|𝑝 − 𝑝𝑠𝑎𝑡| 3𝜌𝑙⁄  for both growth and collapse situations. The advantage of 

this formulation is that it follows, to some part, a physical law and reduces the 

complexity. Nevertheless, the empirical coefficients are still needed to regulate the 

order of magnitude between evaporation and condensation terms. 

Another way of modelling is to establish the barotropic relation that couples the 

mixture density and local pressure as called equation of state (EoS). The model was 

first introduced by Delannoy and Kueny [20] and later widely used by others [21-23]. 

Some results obtained by EoS model show good agreement with benchmarks in term 

of strong compressible multiphase flows. However, the mechanisms inside cavity are 

complicated more than barotropic assumption that the gradient parallel between 

pressure and density can hardly be guaranteed. For weak compressible issues, 

numerical algorithms lost robustness that would induce numerical instability and 

sometimes poor convergence. 

All the mentioned cavitation models were developed and compared with a variety of 

experiments. Despite some satisfactory results have been achieved by existing models, 

some questions still remain to be discussed. One of the basic principles for cavitation 

model application is that the flow pattern of vapor-liquid mixture should be 

homogeneous dispersed bubbly flow. It will exceed the model capability if the 

frequency of bubble coalescence is too high, for instance, in the case of supercavitating 

flow. Though few models are still workable on the flow out of their application scope, 

one has to select weird values for parameters in order to match the results. Furthermore, 

it can be inferred from several simulation comparisons [24, 25] that the model 

parameters cannot reflect the physical characteristics sufficiently because the empirical 

coefficients in specified cavitation model sometimes need to be recalibrated for 

different flow conditions. Also, the results calculated by different cavitation models 

present respective tendencies under the same experimental condition [26, 27]. We 

speculate the main reasons causing these deviations come from two sides. One is that 

the underlying characteristic scales produce large errors when the second derivative 

term in Rayleigh-Plesset equation becomes predominant. As previously mentioned, the 

characteristic velocity in current models is given as an immutable value 𝑢∞ or linear 

form √2|𝑝 − 𝑝𝑠𝑎𝑡| 3𝜌𝑙⁄   so that it is necessary to introduce empirical coefficients to 
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compensate the information mismatch. On the other hand, the typical configuration of 

existing models with two empirical coefficients and several parameters have good 

adaptability but wide range of proper values to guess. Defining the parameters which 

can reveal the physical relevance between model and objective phenomenon would 

narrow the search regions. Thus, we suggest three improvements to account for the 

effect of nonlinear term, eliminating the empirical coefficients, and parameters 

reflected more intrinsic law to remedy the cavitation model with wider applicability. 

In this paper, a novel TEM-kind nonlinear dynamic cavitation model is proposed 

with rigorous mathematical derivation. There arise two functions 𝜓𝑣 and 𝜓𝑐 instead 

of empirical coefficients to represent the nonlinear effects for growth and collapse 

periods respectively. Only two meaningful parameters, the Blake critical radius 𝑅𝑏 

and the average maximum growth radius 𝑅𝑚 , are adopted. The new model is 

implemented in the open source C++ package OpenFOAM based on the 

interPhaseChangeFoam solver [28]. To illustrate the superiorities of the new model 

clearly, three typical validations cases, sequentially from simple to complex, were 

adopted: numerical bubble cluster collapse [29], ultrasonic horn experiment [30, 31], 

and hydrodynamic cavitation around a slender body [32]. In these cases, the similar 

dispersed structures of bubble cloud satisfy the homogeneous assumption. 

In the following sections, basic assumptions and simplifications for bubble cluster 

are stated firstly. The model derivation processes are then elaborated in detail. The 

algorithms, including VoF-based interface capture method MULES [33, 34] in 

OpenFOAM and modified momentum interpolation (MMI) method [35, 36] for 

multiphase flows, are implemented correspondingly. Finally, qualitative and 

quantitative validations of the improved model performance are presented. 

2. Modeling methodology 

2.1 Assumptions 

The cavitating cluster composed by multi-radius bubbles makes the overall problem 

difficult to model. In order to reduce the complexity of modeling the bubble cloud, we 

propose to introduce four assumptions to describe its main mechanisms approximately. 

I. No bubbles’ coalescence or breakage. 

II. Local homogeneous assumption: 

As is shown in Fig. 1, the bubble cloud is divided into lattices by CFD grid in 

physical space. The real bubbles included in each grid cell are equivalent as 

uniform radius according to the local vapor volume so that the free degrees are 

degenerated into one. 

III. Neglecting the local bubble interactions: 

  The intensity of bubble interactions has positive correlations with the bubble 

population 𝑁 [37]. Noting that only partial region of bubble cloud is filled in 

local grid cell. If the mesh resolution is fine enough to contain few bubbles in 
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single element that the interactions between these localized bubbles could be 

ignored. 

IV. The law of mean bubble dynamics: 

  Given a pressure field, bubbles with different scales experience similar 

dynamics which can be governed by Rayleigh-Plesset-type equations. We 

suppose the mean bubble dynamic processes existed which could be obtained 

from statistical operations on the whole cloud bubbles. 

In local point of view, the assumptions II and III are indicated that the dynamics of 

average bubbles, including growth and collapse, insides each grid cell can be treated as 

synchronized processes. It should be noted that the assumption III doesn’t mean nothing 

interaction existed inside bubble cloud. Actually, these interactions are implied in 

numerical fluxes between adjacent grid cells, which will be illustrated in section 4.1. It 

can also be inferred that there is a lower limit of mesh resolution that fulfills the 

requirements in assumption III. We recommend to generate a proper mesh by using grid 

independence principle. 

In overall view of bubble cloud, the structure of void fraction which exhibits 

concentrated interior and sparse border has been observed through several experiments 

[38, 39]. This characteristic can be reflected as radius distribution of the average 

bubbles mentioned above in computational space. The assumption IV is indicated that 

such distribution can be decided by the mean bubble dynamics which is considered as 

internal law that every bubble obeys to manifest the main dynamic character of bubble 

cloud. Therefore, the modeling strategy can be simplified as to investigate the mean 

dynamics of local average bubbles. 

 

Fig. 1 Diagram of bubble cluster in physical/computational space 

2.2 Simplifications 

With the above assumptions, the model expressions can be derived from the 

individual bubble with Rayleigh–Plesset equation: 

𝑝𝑠𝑎𝑡 − �̅�

𝜌𝑙⏟    
1

+
𝑝𝑔0
𝜌𝑙
(
𝑅0
𝑅
)
3𝛾

⏟      
2

= 𝑅
𝑑2𝑅

𝑑𝑡2⏟  
3

+
3

2
(
𝑑𝑅

𝑑𝑡
)
2

⏟    
4

+
2𝜎

𝜌𝑙𝑅⏟
5

−
4𝜇

𝜌𝑙𝑅

𝑑𝑅

𝑑𝑡⏟    
6

. (1) 

Here the first term represents the difference of vapor saturation pressure 𝑝𝑠𝑎𝑡 and 

ambient pressure �̅�. In Euler mixture model, we should point out that �̅� is a phase-
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weighted mixing pressure [6] which can be considered as ambient pressure for those 

under-resolved bubbles. The second terms describe the influence of gases inside the 

bubble. The inertial effects are given by the third and the fourth terms, while terms 5 

and 6 depict the influence of surface tension and liquid viscosity, respectively. 

Schnerr [17] has introduced the bubble density 𝑛 which definition represents the 

bubble population per unit liquid volume is adopted uniformly to build the relation 

between liquid volume fraction 𝛼𝑙 and bubble radius: 

𝛼𝑙 =
𝑉𝑙

𝑉𝑙 +
4
3
𝜋𝑅3𝑛𝑉𝑙

=
1

1 +
4
3
𝜋𝑅3𝑛

. (2) 

Due to the cavitating bubble is commonly treated as pure vapor, the expression for 

mass transfer rate per unit volume can be built as follows: 

�̇� =
1

𝑉

𝑑

𝑑𝑡
(𝜌𝑣 ∗

4

3
𝜋𝑅3 ∗ 𝑛𝛼𝑙𝑉) = 𝜌𝑣𝛼𝑙

2
𝑑

𝑑𝑡
(
4

3
𝜋𝑛𝑅3) . (3) 

According to the meaning of 𝑛 , the non-dimensional term 4𝜋𝑛𝑅3 3⁄   inside time 

derivative indicates the volume ratio of vapor to liquid. The original way to handle this 

term is to expand differentially into 4𝜋𝑅2 𝑑𝑅 𝑑𝑡⁄ , then specify the velocity 𝑑𝑅 𝑑𝑡⁄  by 

using the linear part √2|𝑝 − 𝑝𝑠𝑎𝑡| 3𝜌𝑙⁄  in Rayleigh-Plesset equation for both growth and 

collapse processes. Except for the oversimplification of linearized bubble velocity as 

previously discussed, such instantaneous form would underestimate the intensity of 

source terms during time marching. Thus, we suggest to utilize the average value within 

the evolution time 𝜏 (Eqn.4) during which the bubble radius would vary from present 

𝑅𝑃 to ultimate 𝑅𝑈: 

𝑑

𝑑𝑡
(
4

3
𝜋𝑛𝑅3) ≈ 𝑛 ∗

4
3𝜋𝑅𝑈

3 −
4
3𝜋𝑅𝑃

3

𝜏
. (4) 

It is illustrated the implication of 𝜏  through the numerical results of Rayleigh-

Plesset equation. As is shown in Fig. 2, neglecting the bubble rebound, the typical 

dynamic period can be divided into four stages, namely inception, growth, slow-down 

and collapse, also several critical moments are marked - including the Blake radius 𝑅𝑏, 

zero acceleration point 𝑅𝑑, maximum radius 𝑅𝑚, and the final collapse radius 𝑅𝑐0. 

The dynamics before 𝑅𝑏 is gas dominated oscillation, after that the bubble content is 

occupied by vapor gradually, then unstable cavitation took place. The expansion 

process from 𝑅𝑏 to 𝑅𝑚 is split by inflection point 𝑅𝑑 into growth and slow-down, 

where the ratio of 𝑅𝑑 and 𝑅𝑚 is approximately 0.8. Besides, we emphasize that the 

nonlinear effect should be considered for the accelerated collapse. The cavitation model 

is only devoted to describing growth and collapse so the evolution time for these two 

periods, 𝜏𝑣  and 𝜏𝑐 , are determined from the present point 𝑅  to 𝑅𝑑  and 𝑅𝑐0 , 

respectively. 

 



 

 
7 

 

Fig. 2 Typical bubble dynamic period 

 

Therefore, the main task is to calculate the values of 𝜏𝑣  and 𝜏𝑐  in term of 

Rayleigh–Plesset equation (Eqn.1) where terms including surface tension, viscosity and 

gas had been neglected, 

𝑅�̈� +
3

2
�̇�2 =

𝑝𝑠𝑎𝑡 − �̅�

𝜌𝑙
. (5) 

Here, the saturated vapor pressure 𝑝𝑠𝑎𝑡 and liquid density 𝜌𝑙 are treated as constants, 

and the LHS in Eqn.5 can also be reformulated as the following equation.  

𝑅�̈� +
3

2
�̇�2 =

1

2𝑅2�̇�

𝑑

𝑑𝑡
(�̇�2𝑅3). (6) 

It can be expected that the exact solutions for these evolution time can be derived 

from integrating the bubble velocity 𝑑𝑅 𝑑𝑡⁄ , i.e., to integrate the Eqn.5 twice under 

compatible initial conditions. The deductions are discussed in next section. 

2.3 Modeling 

2.3.1 Growth potential function �̇�𝑣 

Based on the interval of growth period shown in Fig. 2, the integration and 

corresponding initial condition for obtaining the velocity at 𝑅 are given in Eqn.7.1 and 

7.2, where the velocity at 𝑅𝑏 is treated approximately zero: 

𝑡 = 0, 𝑅 = 𝑅𝑏  𝑎𝑛𝑑 �̇� ≈ 0, (7.1) 

∫
𝑑

𝑑𝑡
(�̇�2𝑅3)

𝑡𝑅

0

𝑑𝑡 =
𝑝𝑠𝑎𝑡 − �̅�

𝜌𝑙
∗ ∫ 2𝑅2

𝑑𝑅

𝑑𝑡
 

𝑡𝑅

0

𝑑𝑡. (7.2) 

Assuming that the ambient pressure �̅�  is constant during short period of time, the 

integral result of growing velocity is then given in Eqn.8: 

𝑑𝑅

𝑑𝑡
= √

2

3

𝑝𝑠𝑎𝑡 − �̅�

𝜌𝑙
(1 − (

𝑅𝑏
𝑅
)
3

) . (8) 

Obviously, it approaches to the inertial velocity √2|�̅� − 𝑝𝑠𝑎𝑡| 3𝜌𝑙⁄   when the bubble 

expands significantly greater than 𝑅𝑏. Consequently, the evolution time of 𝜏𝑣 can be 
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integrated from 𝑅 to 𝑅𝑑 using Eqn.8: 

𝜏𝑣 = ∫
𝑑𝑅

√
2
3
𝑝𝑠𝑎𝑡 − �̅�
𝜌𝑙

(1 − (
𝑅𝑏
𝑅 )

3

)

𝑅𝑑

𝑅

=
1

√
2
3
𝑝𝑠𝑎𝑡 − �̅�
𝜌𝑙

∫
𝑑𝑅

√1 − (
𝑅𝑏
𝑅 )

3

𝑅𝑑

𝑅

. (9)
 

Letting 𝑥 = (𝑅𝑏 𝑅⁄ )3, so we have: 

𝑑𝑅 = −
𝑅𝑏
3
𝑥−

4
3𝑑𝑥. (10) 

Thus, Eqn.9 can be reformulated as follows: 

𝜏𝑣 =
𝑅𝑏

3√
2
3
𝑝𝑠𝑎𝑡 − �̅�
𝜌𝑙

∫ 𝑥−
4
3

(
𝑅𝑏
𝑅
)
3

(
𝑅𝑏
𝑅𝑑
)
3

(1 − 𝑥)−
1
2𝑑𝑥, (11) 

where the definite integral in Eqn.11 can be expanded by applying the Gauss 

hypergeometric function, the result becomes: 

𝜏𝑣 =
2𝑅𝑏

3√
2
3
𝑝𝑠𝑎𝑡 − �̅�
𝜌𝑙

[
 
 
 
 
 
√1 − (

𝑅𝑏
𝑅𝑑
)
3

𝐹2 1 (
1

2
,
4

3
;
3

2
; 1 − (

𝑅𝑏 

𝑅𝑑
)
3

)

−√1 − (
𝑅𝑏
𝑅
)
3

𝐹2 1 (
1

2
,
4

3
;
3

2
; 1 − (

𝑅𝑏 

𝑅
)
3

)
]
 
 
 
 
 

. (12) 

Note that there is an ultimate limit under the large ratio of 𝑅𝑑 an 𝑅𝑏, then: 

lim
𝑅𝑏
𝑅𝑑
→0

(
𝑅𝑏
𝑅𝑑
)√1 − (

𝑅𝑏
𝑅𝑑
)
3

𝐹2 1 (
1

2
,
4

3
;
3

2
; 1 − (

𝑅𝑏 

𝑅𝑑
)
3

) =
3

2
. (13) 

The Eqn.12 is simplified as follow: 

𝜏𝑣 =
2

3√
2
3
𝑝𝑠𝑎𝑡 − �̅�
𝜌𝑙

[
3

2
𝑅𝑑 −𝑅𝑏√1− (

𝑅𝑏
𝑅
)
3

𝐹2 1 (
1

2
,
4

3
;
3

2
; 1 − (

𝑅𝑏 

𝑅
)
3

)] . (14) 

Thus, combing with the Eqn.2 and Eqn.14, we can get the approximation of derivative 

in Eqn.4 for growth situation: 

𝑑

𝑑𝑡
(
4

3
𝜋𝑛𝑅3) ≈ 𝑛 ∗

4
3𝜋𝑅𝑑

3 −
4
3𝜋𝑅

3

𝜏𝑣
=
1 − 𝛼𝑙
𝛼𝑙

1

𝑅
√
2

3

𝑝𝑠𝑎𝑡 − �̅�

𝜌𝑙
∗ 𝜓𝑣, (15.1) 

𝜓𝑣 =
(
𝑅𝑑
𝑅 )

3

− 1

(
𝑅𝑑
𝑅 ) −

2
3 (
𝑅𝑏
𝑅 )

√1 − (
𝑅𝑏
𝑅 )

3

𝐹2 1 (
1
2 ,
4
3 ;
3
2 ; 1 − (

𝑅𝑏  
𝑅 )

3

)

. (15.2) 

There, it emerges the formulation 𝜓𝑣  which we call growth potential function that 

represents the capacity of continuous growth until 𝑅𝑑 being reached. Recalling the 

ratio of 𝑅𝑑 𝑅𝑚⁄ ≈ 𝜂 = 0.8, it can be expressed by 𝑅𝑚 alternatively: 
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𝜓𝑣 ≅
(𝜂
𝑅𝑚
𝑅 )

3

− 1

(𝜂
𝑅𝑚
𝑅 )

−
2
3 (
𝑅𝑏
𝑅 )

√1 − (
𝑅𝑏
𝑅 )

3

𝐹2 1 (
1
2
,
4
3
;
3
2
; 1 − (

𝑅𝑏  
𝑅 )

3

)

. (16) 

2.3.2 Collapse potential function �̇�𝑐 

Analogously, with the same integration in Eqn.7.2, the initial condition at max radius 

𝑅𝑚 for obtaining the collapse velocity is given as follows: 

𝑡 = 0, 𝑅 = 𝑅𝑚 𝑎𝑛𝑑 �̇� = 0, (17) 

which yields 

𝑑𝑅

𝑑𝑡
= −√

2

3

�̅� − 𝑝𝑠𝑎𝑡
𝜌𝑙

((
𝑅𝑚
𝑅
)
3

− 1) . (18) 

The evolution time 𝜏𝑐 can be integrated from 𝑅 to 𝑅𝑐0 by Eqn.18: 

𝜏𝑐 = −∫
𝑑𝑅

√
2
3
�̅� − 𝑝𝑠𝑎𝑡
𝜌𝑙

((
𝑅𝑚
𝑅 )

3

− 1)

𝑅𝑐0

𝑅

=
1

√
2
3
�̅� − 𝑝𝑠𝑎𝑡
𝜌𝑙

∫
𝑑𝑅

√(
𝑅𝑚
𝑅 )

3

− 1

𝑅

𝑅𝑐0

. (19)
 

Letting 𝑥 = (𝑅 𝑅𝑚⁄ )3, so we have: 

𝑑𝑅 =
𝑅𝑚
3
𝑥−

2
3𝑑𝑥. (20) 

Eqn.19 can be reformulated as follows: 

𝜏𝑐 =
𝑅𝑚
3

1

√
2
3
�̅� − 𝑝𝑠𝑎𝑡
𝜌𝑙

∫ 𝑥−
1
6(1 − 𝑥)−

1
2𝑑𝑥.

(
𝑅
𝑅𝑚

)
3

(
𝑅𝑐0
𝑅𝑚

)
3

(21) 

According to the expression of incomplete beta function, we obtain: 

𝜏𝑐 =
𝑅𝑚
3

1

√
2
3
�̅� − 𝑝𝑠𝑎𝑡
𝜌𝑙

[𝛽 (
5

6
,
1

2
, (
𝑅

𝑅𝑚
)
3

) − 𝛽 (
5

6
,
1

2
, (
𝑅𝑐0
𝑅𝑚
)
3

)] . (22)
 

Employing Eqn.2 and Eqn.22, we can get the approximation of derivative in Eqn.4 for 

collapse situation: 

𝑑

𝑑𝑡
(
4

3
𝜋𝑛𝑅3) ≈ 𝑛 ∗

4
3𝜋𝑅𝑐0

3 −
4
3𝜋𝑅

3

𝜏𝑐
= −

1− 𝛼𝑙
𝛼𝑙

1

𝑅
√
2

3

�̅� − 𝑝𝑠𝑎𝑡
𝜌𝑙

∗ 𝜓𝑐 , (23.1) 

𝜓𝑐 =
3 (

𝑅
𝑅𝑚
) [1 − (

𝑅𝑐0
𝑅 )

3

]

𝛽 (
5
6 ,
1
2 , (

𝑅
𝑅𝑚
)
3

) − 𝛽 (
5
6 ,
1
2 , (

𝑅𝑐0
𝑅𝑚
)
3

)

. (23.2) 

Emerged 𝜓𝑐 is called collapse potential function considering the historical effect that 

reflects the magnitude of bubble velocity applied by continuously accelerated. 

It is further proposed that the function 𝜓𝑐  can be simplified by constraining the 

bubble radius 𝑅 above the initial radius, where the last moment at 𝑅𝑐0 is actually at 

least one magnitude less than the initial state. This yield: 
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𝜓𝑐 ≅
3(

𝑅
𝑅𝑚
)

𝛽 (
5
6
,
1
2
, (
𝑅
𝑅𝑚
)
3

)

. (24) 

Based on analysis above, the final form of NDCM is given below by replacing 

Eqn.15.1 and Eqn.23.1 into Eqn.3: 

�̇�𝑣 = 𝜌𝑣𝛼𝑙(1 − 𝛼𝑙)
1

𝑅
𝜓𝑣√

2

3

𝑝𝑠𝑎𝑡 − �̅�

𝜌𝑙
   (𝑝𝑠𝑎𝑡 > �̅�), (25.1) 

�̇�𝑐 = −𝜌𝑣𝛼𝑙(1 − 𝛼𝑙)
1

𝑅
𝜓𝑐√

2

3

�̅� − 𝑝𝑠𝑎𝑡
𝜌𝑙

   (𝑝𝑠𝑎𝑡 < �̅�), (25.2) 

Here, the dimensionless functions of growth 𝜓𝑣  and collapse 𝜓𝑐  are given by 

Eqns.16 and 24, respectively, their variations against bubble radius are plotted in Fig. 

3. Noting that the smaller bubble has larger value during both dynamic processes. For 

growth period, tiny bubble possesses long expansion time ( 𝜏𝑣 ) which is cubic 

proportional to volume change that leads to strong growth intensity. As for collapsing, 

the bubble speed at the direction of inward radial is accelerated gradually so that the 

intensity increases. 

 

Fig. 3 The graphs of potential functions, 𝜓𝑣 and 𝜓𝑐 

 

Apparently, only two parameters with significant physical meaning of cavitating 

bubbles, namely the Blake radius 𝑅𝑏  and the average maximum radius 𝑅𝑚 , are 

employed to regulate the model application. The empirical coefficients are substituted 

by the nonuniform potential functions, 𝜓𝑣 and 𝜓𝑐, considered the nonlinear effects 

for both growth and collapse periods. Comparing with the Schnerr-Sauer model given 

in the following equations,  

�̇�𝑣
𝑆 = 𝐶𝑣 ∗

3𝜌𝑙𝜌𝑣
𝜌

𝛼𝑙(1 − 𝛼𝑙)
1

𝑅
√
2(𝑝𝑠𝑎𝑡 − �̅�)

3𝜌𝑙
   (�̅� < 𝑝𝑠𝑎𝑡), (26.1) 

�̇�𝑐
𝑆 = −𝐶𝑐 ∗

3𝜌𝑙𝜌𝑣
𝜌

𝛼𝑙(1 − 𝛼𝑙)
1

𝑅
√
2(�̅� − 𝑝𝑠𝑎𝑡)

3𝜌𝑙
   (�̅� > 𝑝𝑠𝑎𝑡). (26.2) 
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the difference is, except the additional potential functions, that the density factor in 

front can be approximated as 
𝜌𝑙𝜌𝑣

𝜌
𝛼𝑙 ≈ 𝜌𝑣 based on 𝜌𝑙 ≫ 𝜌𝑣. The contribution of 𝛼𝑙 

vanishes that indicates both source terms are only proportional to (1 − 𝛼𝑙) but not 

𝛼𝑙(1 − 𝛼𝑙). 

Moreover, the Schnerr-Sauer model can be reformulated as the same form of NDCM. 

In view of the symmetrical feature, we only discuss the collapse term as follow: 

�̇�𝑐
𝑆 = −𝜌𝑣𝛼𝑙(1 − 𝛼𝑙)

1

𝑅
𝜓𝑐
𝑆√
2(�̅� − 𝑝𝑠𝑎𝑡)

3𝜌𝑙
   (�̅� > 𝑝𝑠𝑎𝑡). (27.1) 

where 𝜓𝑐
𝑆 ≅ 3𝐶𝑐 𝛼𝑙⁄  . Using the Eqn. 2 to substitute 𝛼𝑙 , we can get the equivalent 

collapse potential function of Schnerr model: 

𝜓𝑐
𝑆 = 3𝐶𝑐 (1 +

4

3
𝜋𝑛𝑅3) (27.2) 

In contrast to 𝜓𝑐  which is inversely proportional to 𝑅 , 𝜓𝑐
𝑆  presents positive 

relation that will conclude a confusing interpretation that larger bubbles have stronger 

intensity during collapse. The comparison of 𝜓𝑐 and 𝜓𝑐
𝑆 will be discussed in section 

4.1. 

3. Mathematical formulations and numerical method 

3.1 Governing equations 

The methodology in OpenFOAM for describing the two-phase system of cavitating 

flow is based on Eulerian’s homogenous mixture approach, in which both phases are 

treated as incompressible, isothermal, and immiscible. It is simple and efficient to 

employ the one-field formulation (OFF) of Navier-Stokes equations that the properties 

of two phases, including density and viscosity, are hybrid as equivalent single-phase 

flow. The filtered governing equations including transport equation of liquid volume 

fraction and momentum conservation of effective fluid are given in Eqn. 28 and 29 

respectively, and the velocity divergence in Eqn. 30 comes from summing over the 

volume fraction equations of liquid and vapor that enables to build the pressure 

equation to update the flux field. More details can be referred to Fleckenstein [6] for a 

rigorous derivation: 

𝜕𝛼𝑙
𝜕𝑡
+ 𝑼 ∙ ∇𝛼𝑙 =

𝜌

𝜌𝑙𝜌𝑣
(|�̇�𝑐| − |�̇�𝑣|), (28) 

𝜕

𝜕𝑡
(𝜌𝑼) + ∇ ∙ (𝜌𝑼𝑼) = −∇𝑝𝑟𝑔ℎ + ∇ ∙ [𝜇(∇𝑼 + ∇

𝑇𝑼) − 𝝉𝑇] − 𝒈 ∙ 𝒉∇𝜌, (29) 

∇ ∙ 𝑼 = (
1

𝜌𝑙
−
1

𝜌𝑣
) (|�̇�𝑐| − |�̇�𝑣|). (30) 

Here, two phases are assumed to share the same velocity denoted as 𝑼. The hybrid 

density 𝜌 and viscosity 𝜇 are weighted based on volume fraction 𝛼𝑙 linearly with 

the constant properties of each phase, namely 𝜌𝑙, 𝜌𝑣, 𝜇𝑙, 𝜇𝑣, which are: 
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𝜌 = 𝜌𝑙𝛼𝑙 + 𝜌𝑣𝛼𝑣, (31.1) 

𝜇 = 𝜇𝑙𝛼𝑙 + 𝜇𝑣𝛼𝑣. (31.2) 

Note that the pressure 𝑝𝑟𝑔ℎ  is relative to hydrostatic pressure 𝜌𝒈 ∙ 𝒉  to avoid the 

algorithmic trouble of artificial diffusion induced by height difference. The non-linear 

stress 𝝉𝑇  is closed by RANS or LES turbulence models. In the present work, we 

employed the k-omega-SST two equation model [40]. Thus, the complete framework 

is composed of three parts which are multiphase model (Eqn.28, 29 and 30), turbulence 

model (𝝉𝑇 in Eqn.29) and cavitation model (�̇�𝑐 and �̇�𝑐 in Eqn.28). 

3.2 Algorithms and discretization 

The above governing equations are implemented into CFD code based on the solver 

of interPhaseChangeFoam, in which two important algorithms are developed for 

capturing the topological changes of bubble cluster and coupling the velocity-pressure 

to prevent checkerboard distribution. 

One of the mature algorithms to solve a convective-only transport equation is VoF-

based interface capturing method that a new high-resolution algebraic reconstruction 

proposed by Weller [34] based on flux-corrected transport (FCT) is implemented in 

OpenFOAM. For further sharpness, comparing to the traditional approaches of 

compressive schemes like HRIC or CICSAM, the “counter-gradient” diffusion term is 

joined into transport equation to compress the interface in the reverse direction of 

volume fraction gradient that has good performance for 2D and 3D complex flows. It 

should be noted that the interface of cavitation cavity refers to the boundary of vapor-

liquid mixture (0 < 𝛼𝑙 < 1) and pure liquid (𝛼𝑙 = 1) differently from the one between 

water (𝛼𝑙 = 1) and vapor (𝛼𝑙 = 0) where the ambiguous region (0 < 𝛼𝑙 < 1) should 

be contracted as sharper as possible. Therefore, it is improper to employ the 

compression term which would bring unreasonable diffusion inside cavity. We 

recommend to use the FCT-based numerical method of semi-implicit multi-

dimensional limiter for explicit solution (MULES) for better boundedness and 

consistency. A detailed description of this algorithm can be found in [33]. 

The SIMPLE/PISO algorithm on collocated grid is realized via the technique of 

momentum interpolation proposed by Rhie-Chow [41] that the serrated pressure would 

be eliminated by introducing the third pressure derivative in correction equation. 

However, only an incomplete method is implemented in OpenFOAM for robustness. 

The simulation results would be depending on time step size so that we suggest a 

modified momentum interpolation (MMI) method referring to the work by Cubero [35, 

36] to remove the drawback. The original momentum interpolation (OMI) in 

OpenFOAM is given by: 

𝑼𝑓
∗ =

1

𝑎𝑃
𝑯∗

̅̅ ̅̅ ̅̅ ̅
−
1

𝑎𝑃

̅̅ ̅
∇𝑝𝑟𝑔ℎ,𝑓

∗ + 𝜖 ∗
1

𝑎𝑃

̅̅ ̅
𝑎𝑃
𝑡̅̅ ̅(𝑼𝑓

𝑛 −𝑼𝑃
𝑛̅̅ ̅̅ ), (32) 

that the operator of hat bar is linear interpolation from cell to face center, and the 

superscript ∗  means the mid-iteration till convergence to 𝑛 + 1 . The discrete 

coefficient 𝑎𝑃 can be decomposed into temporal 𝑎𝑃
𝑡  and spacial 𝑎𝑃

𝑠  dependent items, 

and the vector 𝑯 represents the collection of neighbor points summation and other 
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sources. Noting that the last term, called Choi correction, is emerged in unsteady 

problems that the flux difference of previous time step is used to correct the interpolated 

velocity, where 𝜖 employed in OpenFOAM is the empirical factor less than unity to 

prevent the correction value inducing instability. Though, theoretically, the Choi 

correction would be vanished through several iterations, the time step is contained in 

coefficient 𝑎𝑃  that leads to the convergence result still associating with time. To 

remedy the problem, the specific value is defined as 𝑑𝑃 = 𝑎𝑃
𝑡 𝑎𝑃

𝑠⁄ , thereby the Rhie-

Choi interpolation can be reformulated as: 

𝑼𝑓
∗ =

1

1 + 𝑑𝑃

1

𝑎𝑃
𝑠 𝑯

∗
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

−
1

1 + 𝑑𝑓

1

𝑎𝑓
𝑠 ∇𝑝𝑟𝑔ℎ,𝑓

∗ + (
1

1 + 𝑑𝑓

𝑎𝑓
𝑡

𝑎𝑓
𝑠  𝑼𝑓

𝑛 −
1

1 + 𝑑𝑃

𝑎𝑃
𝑡

𝑎𝑃
𝑠 𝑼𝑃

𝑛
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

) . (33) 

Here, it is assumed that all the coefficients on face center are interpolated linearly by 

cell values, and the approximate relations are introduced: 

1

1 + 𝑑𝑃

1

𝑎𝑃
𝑠 𝑯

∗
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

≈
1

1 + 𝑑𝑃̅̅̅̅

1

𝑎𝑃
𝑠 𝑯

∗
̅̅ ̅̅ ̅̅ ̅

, (34.1) 

1

1 + 𝑑𝑃

𝑎𝑃
𝑡

𝑎𝑃
𝑠 𝑼𝑃

𝑛
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

≈
1

1 + 𝑑𝑃̅̅̅̅
𝑑𝑃𝑼𝑃

𝑛̅̅ ̅̅ ̅̅ ̅. (34.2) 

Thus, the formulation of MMI can be derived by substituting Eqn34.1 and 34.2 into 

Eqn.33: 

𝑼𝑓
∗ ≅

1

1 + 𝑑𝑃̅̅̅̅
(
1

𝑎𝑃
𝑠 𝑯

∗
̅̅ ̅̅ ̅̅ ̅

−
1

𝑎𝑃
𝑠

̅̅ ̅
∇𝑝𝑟𝑔ℎ,𝑓

∗ ) +
1

1 + 𝑑𝑃̅̅̅̅
[𝑑𝑃̅̅̅̅ 𝑼𝑓

𝑛 − 𝑑𝑃𝑼𝑃
𝑛̅̅ ̅̅ ̅̅ ̅]. (35) 

To ensure stability of solving pressure equation, the cavitation source term in Eqn.30 

is handled as semi-implicit form based on the principal diagonal dominant as follows: 

∇ ∙ [
1

1 + 𝑑𝑃̅̅̅̅
(
1

𝑎𝑃
𝑠 𝑯

∗
̅̅ ̅̅ ̅̅ ̅

−
1

𝑎𝑃
𝑠

̅̅ ̅
∇𝑝𝑟𝑔ℎ,𝑓

∗ ) +
1

1 + 𝑑𝑃̅̅̅̅
[𝑑𝑃̅̅̅̅ 𝑼𝑓

𝑛 − 𝑑𝑃𝑼𝑃
𝑛̅̅ ̅̅ ̅̅ ̅]]

= (
1

𝜌𝑙
−
1

𝜌𝑣
)𝐹(𝛼𝑙)√

2

3𝜌𝑙(|𝑝𝑠𝑎𝑡 − �̅�𝑛| + 0.001 ∗ 𝑝𝑠𝑎𝑡)
[𝑝𝑟𝑔ℎ
∗ − (𝑝𝑠𝑎𝑡 − 𝜌𝒈 ∙ 𝒉)], (36.1)

 

where 𝐹(𝛼𝑙) is 𝛼𝑙 dependent function: 

𝐹(𝛼𝑙) = 𝜌𝑣𝛼𝑙(1 − 𝛼𝑙)
1

𝑅
[𝜓𝑣 ∗ 𝑝𝑜𝑠(𝑝𝑠𝑎𝑡 − �̅�) + 𝜓𝑐 ∗ 𝑛𝑒𝑔(𝑝𝑠𝑎𝑡 − �̅�)]. (36.2) 

The Choi correction will disappear during PISO/SIMPLE loops, and the time step is 

excluded out of 𝑎𝑃
𝑠 . We employ two cases of lid-driven cavity (single phase flow) and 

2D bubble rising [42] (multiphase flow) to test the performance of different methods 

shown in Fig. 4. It is seen that the results obtained by MMI are overlapped completely 

to indicate the independence of time step (Fig. 4 (b) and (d)) for both situations. 
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(a) Lid-driven cavity (OMI) (b) Lid-driven cavity (MMI) 

  

(c) Rising bubble (OMI) (d) Rising bubble (MMI) 

Fig. 4 Comparison of the velocity profiles between OMI and MMI against different 

time steps 

3.3 Numerical configuration 

The strategy of velocity-pressure coupling is designed dual loops as called PIMPLE 

which have inner PISO and outer SIMPLE for accommodating large time step size [28]. 

The TVD type high order resolution schemes are used for the convective terms, and the 

second order central difference scheme is used for the diffusion terms. The first-order 

implicit Euler scheme is used for the transient terms. 

4. Validation cases 

In this section, the main purpose is to validate the cavitation model (NDCM) 

developed in this work through three fundamental cases. For lack of exact solution 

about cavitating flows, the first case is to simulate the collapse process of vapor bubble 

cluster to illustrate differences between linear and nonlinear models. The real bubble 

cluster excited by ultrasonic field is then investigated to reveal physical connotation of 

model parameters through a series of simulations for different experimental conditions. 

The new model is finally applied to the convective bubble cloud in hydrodynamic 
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cavitation of slender bodies with conical or blunt nose to further highlight the capability 

of NDCM. 

4.1 Bubble cluster collapse 

The necessity of considering the nonlinear effects represented by the potential 

function of 𝜓𝑐 during bubble collapse can be demonstrated clearly by this validation 

case. Here, we recommend to use the simulation case by Schmidt [29] who developed 

a thermodynamic equilibrium model that the interface can be resolved implicitly when 

the grid resolution is sufficiently fine so as comparable to DNS. As is shown in Fig. 

5(a), the bubble cluster above the wall covers a spherical domain with a diameter of 

𝑟𝑏 = 30mm within which 𝑁 = 150 spherical bubbles of equal radii 𝑟0 distributed 

from dense center to sparse border are randomly generated. All bubbles are filled with 

water vapor while the surrounding domain contains liquid water at an initial pressure 

of 𝑝∞ = 100𝑏𝑎𝑟. The initial pressure inside the bubbles is equal to the vapor pressure 

𝑝𝑠𝑎𝑡 = 2340𝑃𝑎. The velocity field is initially at rest. 

  

(a) (b) 

Fig. 5 Distribution of bubble cluster (a), lateral section of computational mesh (b) 

 

The simulation is carried out for bubbles with the radius 𝑟0 of 1mm and 1.5mm by 

NDCM and Schnerr-Sauer models. The lateral section of 3D hexahedral grid is shown 

in Fig. 5(b), three mesh resolutions for the spherical domain containing under-resolved 

bubbles are tested by the nodes of 𝑎 × 𝑏 × 𝑐. We introduce a factor 𝜆 that is defined 

as the ratio between bubble radius (𝑟0) and the numerical resolution scale (√�̅�3
), where 

(√�̅�
3
) is the cubic root of cell-weighted average volume in bubble cluster. The model 

parameters and initial volume fraction 𝛼𝑙 can be calculated from: 

𝛼𝑙 = 1 − 𝑁 ∗ (
𝑟0
𝑟𝑏
)
3

, (37.1) 

𝑛 =
1 − 𝛼𝑙
𝛼𝑙

1

4
3𝜋𝑟0

3
, (37.2) 

that the setup details are shown in the Table 1. According to the conclusions from the 

reference paper, the bubble distribution influences the pressure field significantly but 

trivial for the collapse period, so we initialize the uniform field for 𝛼𝑙 to quantitatively 
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investigate the main collapse process whereas only compare the pressure results 

qualitatively. The numerical pressure transducer is used consistently with [29] that the 

sampling frequency is 49.3MHz on the wall of 15 × 15𝑚𝑚2  directly beneath the 

bubble cluster. 

 

Table 1 Initializations for the vapor bubble cluster 

 𝑟0 = 1.0 [𝑚𝑚] 𝑟0 = 1.5 [𝑚𝑚] 

Liquid volume fraction 

𝛼𝑙 [−] 
0.95556 0.85 

Bubble number density 

𝑛 [1/𝑚3] 
11103833 12482740 

Resolution 

ratio 

 𝜆 =
𝑟0

√�̅�
3

 [−] 

𝑀𝑒𝑠ℎ 1 (6.5k cells) 0.386 0.579 

𝑀𝑒𝑠ℎ 2 (16k cells) 0.521 0.782 

𝑀𝑒𝑠ℎ 3 (26k cells) 0.613 0.919 

 

The validation for grid independence is shown in Fig. 6, that all the variables are 

nondimensionalized by the equivalent radius 𝑅𝑒𝑞𝑛 and its Rayleigh time 𝜏. It can be 

seen that the collapse time calculated by NDCM (solid lines) is converged on Mesh 2 

and 3 for both radii. Recalling the assumption III which is indicated that the bubble 

interactions could be ignored above the resolution of Mesh 2. Differently, the results by 

Schnerr model (symbol-solid lines) given the value of 𝐶𝑐  as unity are overlapped 

together which duration is longer than the former. 

 

𝑟0 = 1.0 [𝑚𝑚] 

 

𝑟0 = 1.5 [𝑚𝑚] 

Fig. 6 The grid independence verifications for different meshes 

 

Fig. 7 shows model comparisons on Mesh 2. The collapse time in reference paper is 

taken as benchmarks which accounts for 60% and 65% of Rayleigh time 𝜏  of the 

radius of 1.0mm and 1.5mm respectively. The collapse time interval by NDCM agrees 

well with the benchmarks although the rate of change has discrepancy which is likely 

due to employ the uniform distribution of 𝛼𝑙 inconsistently with the original method. 

However, it is deviated widely by Schnerr model with 𝐶𝑐 = 1, renamed as Schnerr-Cc 
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as follows, which has insufficient intensity of source term that induces bubbles hard to 

collapse especially in the last stage. In our opinion, the problem is caused by model 

error that different potential functions of Eqns. 24 and 27.2 depict contradictory trend 

against bubble radius. It can be considered that there is a collapsing shell at the border 

of bubble cloud based on the fact that its character of collapse processes is layer-by-

layer. The internal bubbles are normally larger than the external along the shell radial. 

The potential function 𝜓𝑐
𝑆 in Schnerr model gives a positive correlation with bubble 

radius that may induce the high intensity of source term to be emerged inside bubble 

cloud. Thus, the external tiny bubbles are constrained by weak sources that leads to 

difficult collapse. Even though 𝜓𝑐
𝑆 is incompatible with physical actuality, the Schnerr 

model can still be used by changing the coefficient 𝐶𝑐. Ghahramani et al. [43] studied 

the Schnerr approach to simulate bubble cluster collapse, and they employed a high 𝐶𝑐 

to obtain better results of collapse period but emerged huge numerical pressure wiggles 

unexpectedly. We also tried larger values 𝐶𝑐 of 800 and 1200 for both cases that make 

the collapse period matched well with the benchmarks. As is shown in Fig. 8, highest 

pressure pulse occurs at the last process of collapse. However, only the result by 

Schnerr-1 has smooth curve whereas others do not. Comparison of the results by 

NDCM (red line) and Schnerr with large 𝐶𝑐 (blue line), we can see that the new model 

can suppress most extents of spurious pressure wiggles. Noting that the only difference 

in the contrast is the potential functions that indicate the physics implied by 𝜓𝑐 is more 

reasonable than 𝜓𝑐
𝑆. Comparison of the influence by different meshes (red and green 

lines) of NDCM results show that finer resolution contributes to control unphysical 

oscillations, particularly in 𝑟0 = 1.5. It can be found that the pressure is more sensitive 

to mesh resolution although the collapse period has been converged. 

 

 
(a) 𝑟0 = 1.0 [𝑚𝑚] 

 
(b) 𝑟0 = 1.5 [𝑚𝑚] 

Fig. 7 Comparison of time history of bubble cluster collapse 
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(a) 𝑟0 = 1.0 [𝑚𝑚] 
 

(b) 𝑟0 = 1.5 [𝑚𝑚] 

Fig. 8 Comparison of time history of pressure transducer on the wall 

 

For further comparison and understanding the differences between two models, the 

bubble cloud structure, pressure contours and streamlines for the case of 𝑟0 = 1𝑚𝑚 

at different time instances are shown in Fig. 9. The behaviour of bubble cluster collapse 

is seen in the left sides that the variation of cloud radius is tardy from 𝑡 = 0 to 𝑡 =

0.618𝑇 , subsequently dramatic collapse occurs during the rest of times. As is 

mentioned in assumption III, interactions inside bubble cloud can be reflected in the 

flux transfer between neighbor cells even if the local interactions are ignored. The 

motivation is that the velocity doesn’t be divergence free (Eqn.30) that indicating the 

velocity field will be affected by cavitation source terms which inverse gradient will 

generate streamlines in the same direction. As is seen from left sides in Fig. 9(b)~(d), 

the structures of velocity field of NDCM and Schnerr-1 are quite similar. The high-

speed collapsing shell is driven by appropriate source term where large values distribute 

at the outside, but the low-speed internal region almost immunes to collapse until the 

last period at 𝑡 = 0.927𝑇. However, the situation in Schnerr-800 is that unreasonable 

inverse flow is formed due to the higher source values emerge inside that sometimes 

induces the internal bubbles collapse priorly instead of the external (red dash circle in 

Fig. 9(b. II)). The temporal evolution of bubble radius distribution in the direction of 

𝜌𝑟 is shown in Fig. 10. The serrated line marked by the dash circle at 𝑡 = 0.618𝑇 

illustrates the bubble collapsing sequence is from inside-out. Moreover, the innermost 

bubbles are affected prematurely from the boundary (dash arrow). 

Apparently, the property of potential functions (𝜓𝑐 and 𝜓𝑐
𝑆) is the main reason to 

influence the source term distribution. Besides, the local pressure �̅� (in Eqns. 26.2 and 

27.1) is another key factor that exhibits positive correlation to source terms, so that high 

pressure around outer bubble cluster enhances local sources. It should be mentioned 

that �̅� is compatible with 𝜓𝑐 that will further strengthen outer source values, but 𝜓𝑐
𝑆 

weakens the effect by �̅�. For the case of Schnerr-1, it can be inferred that 𝜓𝑐
𝑆 is trivial 

relative to pressure �̅� which dominates the source term over the whole collapse period, 

thus large source values only appear externally to avoid inverse flows. However, such 

distribution of source term is destroyed by employing large 𝐶𝑐 which is augmented 

800 times.  

It is seen from right sides in Fig. 9 that there are some local pressure pulses around 

bubble cloud for contours of NDCM and Schnerr-800. These pulses are the reasons for 
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wiggles detected by the wall pressure transducer. Rossinelli et al. [44] has implemented 

a two-phase flow DNS to simulate 15000 bubbles collapse, which found that the 

pressure wiggles should be existed during temporal evolution. Thus, the smooth 

pressure profile predicted by Schnerr-1 is unreasonable. In Fig. 9(b.III)~(e.III), the 

bubble cloud is dispersed excessively due to insufficient intensity of cavitation sources 

that the dissipated pressure gradient prevents local high pressure to happen. 

Comparison of pressure field by two models in Fig. 9(d. I) and (d. II), the positions of 

high pressure predicted by NDCM are located at the external shell from where to 

infinity the values decrease monotonously to ambient pressure. However, the 

corresponding points in Schnerr-800 invade into the bubble cloud where pressure pulse 

is surrounded by an additional low-pressure band (red dash arrow). We suppose that the 

misplacing pressure distribution is one of the reasons to cause the spurious pressure 

pulses which can be eliminate effectively by using the derived potential function 𝜓𝑐 

in NDCM. 

 

  

(𝑎) 𝑡 = 0 (𝑓) 𝑡 = 𝑇 

   

(I) (II) (III) 

(𝑏) 𝑡 = 0.515𝑇 

   

(I) (II) (III) 

(𝑐) 𝑡 = 0.618𝑇 
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(I) (II) (III) 

(𝑑) 𝑡 = 0.755𝑇 

   

(I) (II) (III) 

(𝑒) 𝑡 = 0.927𝑇 

 

 

 

Fig. 9 Comparison of NDCM (I), Schnerr with 𝐶𝑐 = 800 (II), and Schnerr with 

𝐶𝑐 = 1 (III) in prediction of cloud structure (left side), pressure contours (right side) 

and streamlines at different time instances 

 

 

(a) NDCM 

 

(b) Schnerr (𝐶𝑐 = 800) 

Fig. 10 Comparison of distribution of bubble radius in radial direction of bubble 

cluster 
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4.2 Ultrasonic horn 

After exhibiting the basic expectation of NDCM, the discussion will be concentrated 

on the real bubble cloud generated by the high frequency oscillating ultrasonic horn. It 

has been observed that if the horn tip is sufficiently small and driven at high amplitude, 

cavitation is very strong and the tip can be covered entirely by the gas/vapor phase for 

longer time intervals. We employ the experiment designed by Žnidarčič et al. [30] who 

investigated a systematic study in water at a 20 kHz with the horn diameter of 3 mm 

under variation of driving power, air saturation, viscosity, surface tension and 

temperature, that the attached cavity emerged peculiar dynamics with a self-generated 

frequency of expansion and collapse periodically. After that, they [31] carried out the 

correspondingly simulation studies and obtained poor predictions of flow features with 

the original TEM method, i.e., Schnerr-Sauer model. In their opinion, the Schnerr-

Sauer-like model cannot adapt to the rapidly changing driving pressures, they presented 

an improved approach which also considered the second derivative term of Rayleigh-

Plesset equation but in differential form. Good agreements comparing with 

measurements were then revealed for cavity shape and its frequency. However, the 

evolutionary tendency of the bubble cloud does not match well with experiment 

especially in expansion process. In this section, the tasks are not only to demonstrate 

better predictive results by applying the NDCM method but also the rules of parameter 

regulation. Table 2 lists five experimental conditions for water at room temperature by 

which comparison of simulations can validate the physical meaning of model 

parameters. 

Table 2 Four experimental conditions for ultrasonic horn 

Case 
Percentage of 

max power [%] 

Vibrating amplitude 

𝐴ℎ [𝜇𝑚] 

Saturation 

[%] 

A 

70 164 

100 

B 50 

C 20 

D 30 100 100 

4.2.1 Model parameters determination 

Recalling that the model parameters, 𝑅𝑏 and 𝑅𝑚, are the particular points living on 

the bubble dynamics curve, it is therefore demanded to determine the initial bubble 

state to estimate their reasonable values. The theory of rectified mass diffusion which 

is the mechanism of cavitation inception in acoustic field is adopted to describe the 

formation of microbubbles from dissolved gas. Here, the bubble nuclei are formed from 

microbubbles by gradually mass transfer, between which the difference of magnitude 

order is commonly at one. The analytical model for air-water systems proposed by 

Crum [45] that there exists a certain critical amplitude of acoustic pressure 𝑝𝑐 above 

which the microbubbles will begin to grow by rectified diffusion. The expression is 

given as follow: 
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�̃�𝑐 = 𝜌𝑅0
2𝜔𝑁

2√
[(1 −

𝜔2

𝜔𝑁
2)
2

+ (
𝑏𝜔
𝜔𝑁
)
2

] (1 +
2𝜎
𝑅0𝑝∞

−
𝑐𝑖
𝑐0
)

(3 + 4𝐾) (
𝑐𝑖
𝑐0
) − [

3(𝜂 − 1)(3𝜂 − 4)
4 + (4 − 3𝜂)𝐾](1 +

2𝜎
𝑅0𝑝∞

)
, (38) 

where the 𝑅0  is the microbubble radius, the 𝑐𝑖  and 𝑐0  are the concentration at 

bubble interface and ambient liquid respectively, which ratio represents the gas 

saturation, whereas other variables can be seen in [45]. Shown in Fig. 11 are the values 

of Eqn. 38 for the driving frequency at 20kHz. It is indicated that large microbubbles 

tend to grow easily on the same saturation curve, besides, it is difficult to form nuclei 

for the same size of microbubble in degassed water. 

 

Fig. 11 The graphs of critical pressure 𝑝𝑐 against microbubble radius 𝑅0 

 

As is obtained the one-to-one relation between acoustic pressure 𝑝 and microbubble 

𝑅0 so we can get the size ranging of activated microbubbles under a given acoustic 

field. Referring to the work by Mellow [46, 47], the approximate analytic solution of 

acoustic field 𝑝 for the vibrating horn is available using the Green function method 

which formulas indicate that the distribution of 𝑝 relates to three variables, the horn 

radius 𝑎 , the vibrating frequency 𝑓 , and the vibrating amplitude 𝐴ℎ , but is only 

proportional to 𝐴ℎ since the other two are fixed conditions in experiment. It is seen 

that the acoustic fields in Case A, B and C are identical, and become weaker in Case C 

and D sequentially for the vibrating amplitude reduced. 

The diagrams in Fig. 12 illustrate the nondimensionalized analytic solution of 

acoustic field 
�̃�

𝜌𝑙𝑐𝑢0
 where the maximum value is located at the center of bottom wall 

and the semi-ellipsoidal iso-surfaces monotonically decrease down to the far field. It 

can be inferred from the background experimental pictures which represent the peak 

bulk of cavity that the region surrounded by the red iso-surface enables to provide 

sufficient driving force to develop the microbubbles evolving as cavitation nuclei. Thus, 

in term of the theoretical values of acoustic pressure 𝑝 inside the region, the span of 

qualified microbubbles, shown in Table 3, can be evaluated by Eqn. 38. According to 

the conclusions in Fig. 11, the ranges of 𝑅0 display that the larger nuclei are appeared 

in the more degassed water (Case A, B and C), likewise situations embodied in weaker 

acoustic field (Case A and D). 
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Case A Case B 

  

Case C Case D 

 

Fig. 12 The estimation of cavitation bubble production region 

 

Since the value scope of microbubbles 𝑅0 inside the effective region of acoustic 

field has been acquired, we suggest the multiples about 6~8 of 𝑅0 to define the value 

range for model parameter 𝑅𝑏. And the range of maximum radius 𝑅𝑀 can exploit the 

numerical solution of Rayleigh-Plesset equation with the initial conditions of endpoint 

values of 𝑝  and 𝑅0  that can estimate the parameter 𝑅𝑚 . For clarity, all these 

specified values of five cases are listed in Table 3 as well. 

 

Table 3 Estimation of model parameters 

 Case A Case B Case C Case D 

Pressure amplitude in 

effective region 𝑝 [𝑏𝑎𝑟] 
6.18~15.8 7.72~15.8 9.27~15.8 6.12~9.63 

Activated microbubbles 

𝑅0 [𝜇𝑚] 
0.36~0.60 0.75~1.0 4.5~6.0 0.46~0.61 

Model parameters 

of 𝑅𝑏 [𝜇𝑚] 

Range 2.2~4.8 4.5~8.0 27~48 2.8~4.9 

Value 3.5 5.2 35 4.6 

Maximum growth radius 

𝑅𝑀 [𝑚𝑚] 
0.41~0.76 0.49~0.77 0.56~0.77 0.41~0.56 

Model parameters of 

𝑅𝑚 [𝑚𝑚] 
0.58 0.62 0.66 0.48 

4.2.2 Simulation setup 

As is shown in Fig. 13, we employ a 2D axisymmetric computational domain 

consistently with the experiment with the dimensions of 40 mm height and 25 mm 

radius, in which the horn tip of 3 mm diameter is placed vertically from top 30 mm 

above the bottom. It is note that the near-wall grid is densified to ensure the y+ is lower 
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than one. 

 

Fig. 13 Computational domain for ultrasonic horn 

All the walls are used the no-slip velocity boundary condition and zero gradient for 

pressure. The top of atmosphere is defined as fixed pressure at 1 atm. The horn vibration 

in a sinusoidal manner at a frequency of 20 kHz, at various amplitudes, depending on 

the power. To capture the movement a dynamic mesh approach was used that the mesh 

must constantly be updated by laplacian smoothing and local remeshing. It was 

determined that the mesh, due to very small deformation of the domain, preserves an 

extremely low value of cell skew. 

Three mesh densities were tested and it is found that it does not influence the outcome 

of the calculation of cavitation dynamics, but the model parameters have to change 

slightly for different resolutions. Consequently, the following results are calculated on 

a medium grid with 23550 cells. 

4.2.3 Results 

A series of simulations by the new cavitation model are compared with experiments 

including the volume evolution of the bubble cloud and the acoustic pressure probed 

by hydrophone. Considering that the physics of these cavitating flow do not differ 

significantly between Case A-D, we emphatically analyze the results of Case A whereas 

others are given more briefly in data charts. 

A sequence of the spatial structures of cavity beneath the tip of the horn are shown 

in Fig. 14 graphically displayed as left simulation and right experiment. It is seen that 

the mushroom-like shape cloud is formed rapidly during the interval of 0 to 40𝜇𝑠. 

Then, the generated bubbles keep the dynamic balance from 60𝜇𝑠  to 100𝜇𝑠  in 

which the maximum volume is achieved about 80𝜇𝑠. After that the cavity contracts at 

the outer rim and the violent collapse happens at the end of cavitation period. A 

comparison between the measured and predicted cavity volume is shown in Fig. 15(a). 

It is evident that the simulation by NDCM accurately predicts the dynamics of the 

cavity volume which cycle (5010Hz) is about a quarter of the driving frequency 

(20kHz). Noting that the cavity frequency calculated by Schnerr-Sauer model can agree 

with the experiment, the produced vapor volume is insufficient though. The typical 
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period inside pink dash line is magnified shown in Fig. 15(b), and attached the results 

obtained by Znidarcic’s model additionally (dash line). We can see that the tendency is 

almost the same before 30𝜇𝑠, however the shrink of cavity in growth period predicted 

by Znidarcic model mismatches with the measurements, moreover, the variation rate of 

cavity volume shifts much faster than the experiment during collapse process. 

  

  

  

  

  

Fig. 14 Typical cycle of the oscillation of a large cavity between simulation and 

experiment at the driving frequency of 20kHz 

 

Some discrepancies should be pointed out that a pinch of bubbles at the tip of cavity 
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cannot capture perfectly possibly due to the 2D simulation method since the bubble 

cloud has non-axisymmetric 3D structure shown in experiment. Besides, the convection 

of corner bubbles which is likely induced by Bjerknes [48] force is unable to take into 

account here limited by the model capability. 

 

  

(a)  (b)  

Fig. 15 Comparison between the predicted and measured attached cavity volumes for 

Case A 

 

A comparison of measured and simulated pressure evolutions at a distance of 7 mm 

from the tip of the horn are shown in Fig. 16(a). It is indicated that high pressure pulse 

is emitted at the last stage of cavity collapse. The peak pressure amplitude seems to be 

slightly overpredicted which could be caused by the assumption of incompressibility 

for both phases, and furthermore missing the isolated bubble structures (see the right 

side in Fig. 14) where the cavitation model can only capture the main cavity bulks. Also 

note that the high frequency components are smoothed out because of the insufficient 

mesh resolution at the vicinity of probe and low order of temporal scheme under the 

RANS simulation scenarios. Nevertheless, the periodicity of pressure peaks is correctly 

predicted shown in Fig. 16(b) of power spectrum density (PSD). It is evident that the 

primary and second frequency in PSD are identical with the cavity and the driving horn 

respectively, which reflect main dynamic characteristics in the system. 

 

  

(a)  (b)  

Fig. 16 Comparison between the predicted and measured acoustic pressure (a), PSD 
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analysis for the obtained acoustic pressure in Case A (b) 

As unsuccessful application of Schnerr-Sauer model is well illustrated, we will 

discuss the rest of Cases B-D which model parameters are orderly defined in Table 3. 

The typical cavity volume evolution for degassed water of Case B and C are shown in 

Fig. 17(a) and Fig. 18(a) respectively, we can see that the peak volume are declining as 

the gas content decreased (about 7~8𝑚𝑚3 for Case A, 6~7𝑚𝑚3 for Case B, and 

4~5𝑚𝑚3  for Case C), meanwhile accompany with increasing unsteadiness of the 

cavitation dynamics. This character can also be observed in acoustic pressure variations 

(Fig. 17 (b) and Fig. 18(b)) which amplitude wiggles violently by degassed extent. 

There exist complex bubble interactions inferred from Fig. 18(b) (Case C) that the 

pressure pulse radiates more frequently than the previous two where the calculated 

pressure reflects these frequency components qualitatively as well. However, the 

periodicity of the cavity does not damage which is slightly increased (5010Hz for Case 

A, 5079Hz for Case B, and 5259Hz for Case C) for more additional high frequency 

emerged. Comparing with Cases A, the peak volume is significantly reduced in Case D 

shown in Fig. 19(a) which is caused by the weak acoustic field by the low driving power. 

Differently the cyclic evolution period of cavity (6517Hz) is raised to about one-third 

of driving frequency. 

It is seen that the NDCM is capable to predict the cavity dynamics accurately. 

Moreover, the proposed model parameters, 𝑅𝑏 and 𝑅𝑚, are physically based where 

good agreements can be obtained by setting reasonable values. 

 

 

(a)  
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(b)  (c)  

Fig. 17 Comparison between the predicted results and measured data for Case B (70% 

max power, 50% saturated) 

 

 

(a)  

  

(b)  (c)  

Fig. 18 Comparison between the predicted results and measured data for Case C (70% 

max power, 20% saturated) 

 

 

(a)  
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(b)  (c)  

Fig. 19 Comparison between the predicted results and measured data for Case D (30% 

max power, 100% saturated) 

4.3 Slender body 

In this section, we extend the application for NDCM on the hydrodynamic cavitation 

flow which contains the structures of dispersed bubbly cloud. The natural cavitation 

experiments [32] for axisymmetric bodies with blunt and conical heads are employed 

for elementary investigation, also to compare with the results by Merkle’s model in the 

article. 

The 2D axisymmetric computational domains are adopted shown in Fig. 20. The 

diameter of the slender body is 20 mm and the length 7.5d. The domain extension has 

15d upstream and 20d downstream. The inlet velocity is 6.8m/s and fixed outlet 

pressure based on the cavitation number 𝜎 with 0.5 and 0.3. The slender walls are 

specified as no-slip boundary and the outer ring is set as slip wall. The boundary layer 

grid is generated to ensure y+ less than 1. 

 
Fig. 20 Computational domain for slender bodies with conical and blunt heads 

 

In order to determine the model parameters, it only needs to select the middle mesh 

with the quantity of 37700 cells and 45400 cells for conical and blunt heads respectively 

between three resolutions which the simulation results are close. For the lack of 

information to estimate the size of bubble nuclei, the approximate values of 𝑅𝑏 and 
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𝑅𝑚 for both heads listed in Table 4 are guessed from several trial calculations. We 

suppose that these values are reasonable because the cavitation region has higher 

negative pressure and wider area as dropping the cavitation number, which enables 

smaller nuclei to grow (𝑅𝑏) and more residence time leads to bubbles expand larger 

(𝑅𝑚). 

Table 4 Model parameters of NDCM model 

 𝜎 = 0.5 𝜎 = 0.3 

Blunt 
𝑅𝑏 = 32 𝜇𝑚 

𝑅𝑚 = 0.53 𝑚𝑚 

𝑅𝑏 = 25 𝜇𝑚 

𝑅𝑚 = 0.62 𝑚𝑚 

Conical 
𝑅𝑏 = 28𝜇𝑚 

𝑅𝑚 = 0.43𝑚𝑚 

𝑅𝑏 = 18𝜇𝑚 

𝑅𝑚 = 0.52𝑚𝑚 

 

The pressure distributions for blunt head with cavitation number of 0.3 and 0.5 are 

shown in Fig. 21(a). We can see that the results by NDCM achieves good agreements 

especially for 𝜎 = 0.5 that the cavity length predicted by new model (solid line) is 

almost identical with the experiment but underestimated in Merkle’s (dash line). The 

insufficient length of cavity predicted by Merkle’s model is embodied notably in 

conical head shown in Fig. 21(b) whereas the NDCM presents a reasonable prediction 

matching with experiments. 

However, some discrepancies still exist limited by 2D geometry that the recovery 

pressure at the cavity tail is a bit lower than experiment at 𝜎 = 0.5 and the cavity 

length is little overpredicted for blunt at 𝜎 = 0.3 . It is more likely to use the 3D 

simulation to capture the asymmetric structures of bubble cloud which are shedding 

periodically that can obtain better results. 

  

(a) blunt (b) conical 
 

Fig. 21 Comparison of pressure distribution for blunt and conical head body 

5. Conclusions 

In this study, a novel nonlinear dynamic cavitation model (NDCM) is proposed 

against the bubble cluster structure through strictly mathematical derivation. Firstly, the 

four thorough assumptions for TFM-type models are explicated that the filtered bubbles 

are mapped from physical to computational space. Then, we introduced the integral 
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average method to calculate the time derivative term 
𝑑

𝑑𝑡
(
4

3
𝜋𝑛𝑅3)  that the second 

derivative in Rayleigh-Plesset equation can be considered in the characteristic time 

during growth and collapse, namely 𝜏𝑣 and 𝜏𝑐, solved analytically. Consequently, two 

additional potential functions 𝜓𝑣 and 𝜓𝑐 emerge in model formula which represent 

the nonlinear effects in cavity dynamics. In addition, without any empirical coefficients, 

there are merely two parameters with definitude physical meaning in which 𝑅𝑏 and 

𝑅𝑚  indicate the Blake critical radius and the average maximum growth radius, 

respectively. 

In order to validate the performance of the new model, three simulation cases, from 

simple to complex, were employed including the collapse of numerical bubble cluster, 

periodic generation and collapse of real bubble cloud in ultrasonic horn experiment, 

and hydrodynamic cavitation of slender body. 

For the first case, the results showed that the collapse time of NDCM and benchmark 

agreed well except the speed rate which may cause by different initialization method. 

The layer-by-layer collapse character and pressure shock at last stage were revealed 

correctly. On the contrary, the Schnerr-Sauer model with parameter 𝐶𝑐 = 1 

overpredicted the collapse time because of insufficient intensity of source term. More 

importantly, the potential function 𝜓𝑐
𝑆  implied in Schnerr model gives a positive 

relation with bubble radius 𝑅𝑏  that contradicts with 𝜓𝑐  in NDCM. Although the 

collapse time can be remedied by employing large coefficient 𝐶𝑐, the model errors were 

also augmented that brought great numerical pressure wiggles and incorrect collapse 

processes. Most of spurious pressure can be suppressed by applying NDCM, but the 

remaining components should be further studied in future. 

The NDCM was then applied to the real bubble cloud generated in acoustic field. 

The main purpose was to confirm the physical relevance of 𝑅𝑏  and 𝑅𝑚 . Four 

experimental conditions were adopted that the theoretical value ranges of model 

parameters were determined based on the rectified diffusion theory. It was found that 

the variation of those well-matched simulation results was in accord with the laws of 

specified model parameters, and more sensitive to 𝑅𝑏 which should be given larger 

values in more degassed water or weaker acoustic field. A detailed comparison of Case 

A against the results from Znidarcic showed that the second derivative term in 

Rayleigh-Plesset equation considered in integral form rather than differential can 

provide better predictions. 

Finally, the new model was extended to hydrodynamic cavitation of convective 

dominated flow that the slender bodies with two heads of conical and blunt were 

simulated under the cavitation number of 0.3 and 0.5. The good agreements of cavity 

length and pressure distribution further indicated that the NDCM is applicable for the 

cavitation cavity with dispersed bubble structures. 
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