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A B S T R A C T   

Hydrodynamic cavitation poses as a promising new method for wastewater treatment as it has been shown to be 
able to eradicate bacteria, inactivate viruses, and destroy other biological structures, such as liposomes. Although 
engineers are already commercializing devices that employ cavitation, we are still not able to answer the 
fundamental question: What exactly are the damaging mechanisms of hydrodynamic cavitation in various ap
plications? In this light, the present paper numerically addresses the interaction between a single cavitation 
microbubble and a nearby lipid vesicle of a similar size. A coupled fluid–structure interaction model is employed, 
from which three critical modes of vesicle deformation are identified and temporally placed in relation to their 
corresponding driving mechanisms: (a) unilateral stretching at the waist of the liposome during the first bubble 
collapse and subsequent shock wave propagation, (b) local wrinkling at the tip until the bubble rebounds, and (c) 
bilateral stretching at the tip of the liposome during the phase of a second bubble contraction. Here, unilateral 
and bilateral stretching refer to the local in-plane extension of the bilayer in one and both principal directions, 
respectively. Results are discussed with respect to critical dimensionless distance for vesicle poration and 
rupture. Liposomes with initially equilibrated envelopes are not expected to be structurally compromised in cases 
with δ > 1.0, when a nearby collapsing bubble is not in their direct contact. However, the critical dimensionless 
distance for the case of an envelope with pre-existing pores is identified at δ = 1.9. Additionally, the influence of 
liposome-bubble size ratio is addressed, from which a higher potential of larger bubbles for causing stretching- 
induced liposome destruction can be identified.   

1. Introduction 

Cavitation is a physical phenomenon that can occur in liquids and is 
accompanied by the appearance of vaporous and gaseous cavities, 
commonly recognized as bubbles, that grow and collapse due to changes 
in ambient pressure. At first, cavitation was recognized solely as a 
nuisance, as it can cause unwanted vibrations, noise, and material 
erosion in hydraulic machinery [1]. Nevertheless, today cavitation is 
being utilized in various applications in the fields of chemistry [2], 
medicine [3], and environmental protection [4]. Hydrodynamic cavi
tation also poses as a promising new method for wastewater treatment 
[5], as it has been shown to be able to eradicate bacteria [6], inactivate 
viruses [7], and destroy other biological structures, such as liposomes 
[8]. 

Liposomes are lipid vesicles, that comprise of a thin spherical enve
lope and a liquid aqueous interior. Their envelope consists of at least one 
lipid bilayer, which is most commonly composed of phospholipids. Due 

to their similarity to a cell membrane, liposomes are used as artificial 
cells and model systems to study properties and stability of lipid bilayers 
[9]. In our recent study [8], we have demonstrated, that hydrodynamic 
cavitation is one of the most effective physico-chemical treatments for 
destroying giant 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipid 
vesicles, liposomes that measure over 1 μm in diameter and possess an 
envelope of a single DOPC lipid bilayer. As the effects of hydrodynamic 
cavitation were comparable to an ultrasound treatment, multiple ques
tions regarding the optimization of hydrodynamic cavitation treatment 
for destruction of various biological structures remain. For example, 
different flow conditions are effective against bacteria [6] as they are 
against viruses [7]. 

Numerous potentially damaging mechanisms that accompany hy
drodynamic cavitation can be speculated [10], such as strong shear 
flows [11], jets [12], high local temperatures [13] and pressure changes 
[14], shock waves [15], and formation of highly reactive free radicals 
[16]. In addition to this, one could also expect the bubbles to start 
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forming and growing within the bilayer or the vesicle itself, which could 
lead to local bilayer poration and liposome stretching [17]. However, 
the contribution of the different mechanisms and their possible syner
gistic effects in various applications are still being explored [10]. In 
order to better understand the fundamental physics behind the inter
action between bubbles and biological structures, such as here consid
ered liposomes, more research concerning single bubble dynamics in 
vicinity of freely submerged deformable structures on a micro scale is 
needed. In the present case, we can distinguish between bubble- 
liposome interaction on three different spatial scales. Cavitation bub
bles can be significantly larger (≫1μm), of a similar size, or smaller 
(≪1μm) than here considered vesicles (∼ 1μm). As the smaller nano 
bubbles tend to exhibit a high degree of stability in regard to ambient 
pressure oscillations [1], we suspect micro and macro bubbles to have 
the greatest damage potential in the case of hydrodynamic cavitation. 

In the present paper, we numerically address the former – the 
interaction between a single microbubble in vicinity of a DOPC lipid 
vesicle of a similar size, as most cavities in water have an initial diameter 
in the order of a few micrometers [18]. Our main interest is to determine 
the potentially destructive mechanical mechanisms of microbubble- 
liposome interaction, which would allow us to better explain the rea
sons behind the previously observed liposome destruction by the hy
drodynamic cavitation treatment [8]. Besides giant liposomes, the 
chosen spatial scale in the order of 1 to 10 μm is similar to the size of a 
vast variety of pathogenic and potentially harmful microorganisms, such 
as most bacteria, certain cyanobacteria, unicellular algae, and yeast cells 
[19]. Additionally, viruses can reach the diameter of several hundred 
nanometers [19], which is still relatively close to the spatial scale 
considered in the present study. However, in all of the given examples, 
the extent of their structural similarity to DOPC vesicles has to be 
carefully considered if one attempts to extrapolate the findings of the 
present study to other biological structures. 

First, we acknowledge the existing experimental and numerical 
research on the subject of a cavitation bubble interacting with various 
freely submerged structures on a micro scale. Marmottant and Hilgen
feldt [20] showed that gently oscillating single bubbles (equilibrium 
radius Req of 10–100 μm) excited by an ultrasound can already result in 
controlled deformation and lysis of DOPC vesicles of similar sizes. The 
authors conclude that the acoustic microstreaming, induced by the 
bubble, plays a key role in vesicle poration as it exerts large enough 
shear forces on vesicles in the flow to manipulate, deform, and rupture 
them. In their later work [21], the authors derived analytical predictions 
of vesicle shape progression and found two possible modes of liposome 
rupture: a) pore formation at the waist of the vesicle in the case of suf
ficiently large shear rates, which cause the local tension to exceed the 
rupture treshold and b) liposome buckling at the poles in the case of 
sufficient liposome elongation. Although the authors acknowledge that 
the shear flow is focused on a relatively small volume due to a rapid 
decay of the acoustic streaming velocity of the bubble, the effective 
bubble-liposome distance for its destruction is unfortunately not directly 
reported, as is might not be the most relevant for the case of continuous 
periodic bubble oscillations. This was addressed later by Zhou et al. 
[22], who acoustically excited single laser-produced microbubbles 
(Req = 5–12 μm) to induce their growth and a subsequent collapse in 
vicinity of a Xenopus oocyte (cell radius Rcell ∼ 400 μm). The authors 
report the effective initial bubble-cell distance for membrane poration to 
be 1.5Req and the mean pore radius in the order of a tenth of a micro
meter. Additionally, they observed a steep decline in membrane 
disturbance by increasing bubble-cell distance to 2Req and no effect 
beyond 6Req. Effective distance for cell poration was later also reported 
by Le Gac et al. [23], who used a single laser-induced cavitation bubble 
(maximum bubble radius Rmax ≈ 40 μm) in a microfluidic confinement 
to porate suspended human promyelocytic leukemia cells (Rcell ∼ 6 μm). 
Cell lysis probability of more than 75% was observed for cells located ⩽ 
0.75Rmax away from the cavitation bubble center, while cells farther 

away than 4Rmax seemed to have been unaffected. Unfortunately, the 
utilized definitions of bubble-cell distance differ between both studies, 
which reduces the reader’s ability to directly compare the obtained re
sults. Nevertheless, based on the results of both studies we estimate the 
critical bubble-cell distance to be similar between both studies. We find 
their consistency fairly surprising, as the former researchers considered 
cells much larger in comparison to cavitation bubbles (Rcell/Req ≈ 40), 
whereas in the latter case their size ratio was the opposite and in the 
range of Rcell/Rmax ≈ 0.15. This suggests that cell poration is not largely 
dependent on the bubble-cell size ratio, however it may still play a role 
on the extent of the cell’s membrane disruption – local poration versus 
its complete destruction. Later, Li et al. [24] reported the poration of 
single myeloma cells by microbubble jetting, which, while certainly 
interesting, is unfortunately not directly applicable to the present study, 
as the reason for the asymmetric bubble collapse was the nearby cell 
trapping structure, rather than the presence of a myeloma cell itself. 

The considered topic was also addressed numerically in the past. 
Most of the research is based on the potential flow theory along with 
boundary element method (BEM) to resolve bubble dynamics, without 
the consideration of viscous effects and compressibility of the sur
rounding fluid. Both Gracewski et al. [25] and later Guo et al. [26] 
considered ultrasonically excited microbubbles in vicinity of a deform
able sphere and a red blood cell, respectively. In most cases results 
showed formation of an axial jet away from the cell and a maximum 
areal expansion of a cell in the order of 0.1 %, which is well below the 
rupture threshold of a few percent [27]. On the other hand, the exper
imental observations and complementary BEM-based simulations of 
Tandiono et al. [28] show that a single laser induced microbubble (Rmax 

between 30 and 100 μm) can significantly stretch red blood cells (Rcell ∼

4 μm), up to five times their initial size. Noticeable elongation can also 
occur in cells deformed by a nearby acoustically actuated bubble, which 
can be employed to characterize cell deformability for various diag
nostic and biological purposes [29]. Although viscous and compress
ibility effects normally play a minor role on bubble dynamics [1], they 
gain importance when considering micro and nano scale bubbles, 
strongly collapsing bubbles, emitted shock waves, and bubble’s inter
action with nearby objects. Our recent numerical study [30] addressed a 
single collapsing microbubble (Req = 1 μm) in vicinity of a freely sub
merged spherical particle of a similar size. There, a different numerical 
approach was employed, a finite volume method (FVM) along with the 
volume of fluid (VOF) method to resolve compressible viscous multi
phase flow. The reported results show only slight deviations of bubble 
shape from the initial spherical for the cases of non-attached bubbles, 
which indicates that the formation of a strong jet towards a submerged 
particle on a micro scale is highly unlikely due to the cushioning effects 
of surface tension and a relatively low impact of the particle’s presence 
on the bubble dynamics itself. In addition, the results show that 
although the gas inside a collapsing bubble can locally reach several 
thousand Kelvin, the thermal damage seems to be irrelevant in the cases 
where a similarly sized particle is not initially in direct contact with the 
collapsing bubble. This can be explained by the fact that the temperature 
field inside the collapsing bubble is not uniform and that the thickness of 
the thermal boundary layer is much smaller than the radius of the 
collapsing bubble. This further limits the search for the most likely 
mechanisms of destruction of liposomes and other biological structures 
during hydrodynamic cavitation treatment. 

As already mentioned above, the present paper numerically ad
dresses interaction between a single cavitation microbubble and a 
nearby DOPC lipid vesicle of a similar size. Temporal and spatial scale of 
the considered phenomenon is in the order of 10 ns and 1 μm, respec
tively. A coupled fluid–structure interaction (FSI) model is employed, 
which considers the influence of liposome’s deformability on the sur
rounding fluid flow and bubble dynamics, and vice versa. Compressible 
multiphase flow is resolved using a FVM/VOF approach, whereas the 
liposome’s envelope is modeled as a compliant structure through the 
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finite element method. By choosing a continuum mechanics approach 
we are able to consider the system’s macroscopic properties, such as 
areal expansion of the bilayer, viscosity, compressibility, and surface 
tension of fluids, etc. Through this we omit modeling of the actual 
molecular dynamics on a local, nano and subnanoscale, and neglect 
certain phenomena such as hydrophobic attraction and hydrophilic 
repulsion. This can be justified by the fact that even when bubble and 
liposome are in direct contact, the peak magnitudes of hydrophobic 
attraction force are expected to not exceed a few tens of Nanonewton 
[31–33]. Additionally, the attraction will significantly decay after their 
separation of only a few nanometers, as is seems to adhere to the 
exponential trend with the decay length in the order of a nanometer 
[32,33]. For reference, the pressure force that causes a microbubble to 
collapse in the present case is in the order of 0.1 mN. 

As the bubble collapses due to increase in ambient pressure, vesicle 
deforms according to the temporal development of the surrounding flow 
field. An emphasis is given on various modes of vesicle’s deformation 
(bilayer stretching and wrinkling) and their corresponding driving 
mechanisms, from which effective distances for liposome poration and 
rupture are identified. Results are discussed with respect to vesicle 
destruction by the hydrodynamic cavitation treatment. Besides the 
effective bubble-liposome distance, the influence of their size ratio is 
also discussed. 

2. Theoretical background and numerical model 

In this section we present the considered physics and employed 
models to resolve bubble-liposome interaction. The computational 
domain is split into two sub-domains: a fluid domain, that consists of a 
gas bubble in a surrounding liquid – water, and a solid domain, that 
comprises of a spherical vesicle’s envelope. Both sub-domains are 
coupled together to form the final fluid–structure interaction (FSI) 
model. Since liposomes contain an aqueous core, we consider it as a 
compressible and viscous liquid, which is therefore numerically resolved 
as a part of the fluid domain. It is true that based on the purpose of 
liposome generation, various drugs, contrast agents, genetic material, 
etc., can be dissolved in the aqueous solution, which could to some 
degree affect some of its properties, such as viscosity. However, as this is 
largely dependent on a specific application, we decided to consider 
interior as water for the sake of generality. 

2.1. Fluid dynamics model 

The compressible multiphase flow is modeled using a finite volume 
method based solver [34], which was already employed by different 
authors to model various cases of spherical and non-spherical bubble 
dynamics [35–37,30]. The volume of fluid method is used to resolve 
multiphase flow, where the interface between both phases, liquid and 
gas, is tracked by solving a single continuity equation (Eq. (1)) for the 
volume fraction of water αw. 

∂(αwρw)

∂t
+∇⋅(αwρwVw) = 0 (1) 

Here ρw and Vw denote the density and velocity vector of the liquid 
phase, i.e., water. Based on the obtained volume fraction field, we can 
determine the volume-averaged material properties throughout the fluid 
domain. Following this, a single momentum (Eq. (2)) and energy (Eq. 
(3)) equation is solved, from which the shared velocity V and temper
ature T field is obtained based on the already determined material 
properties. 

∂
∂t

(

ρV
)

+∇⋅(ρV ⊗ V) = − ∇p+∇⋅τ + f (2)  

∂
∂t

(

ρe
)

+∇⋅(V(ρe + p)) = ∇⋅(k∇T) (3) 

Here p denotes pressure, f body forces, k thermal conductivity, and τ 
the viscous stress tensor that can be written for Newtonian fluids as 

τ = μ
[
(
∇V + (∇V)

T )
−

2
3
(∇⋅V)I

]

, (4)  

where μ is dynamic viscosity and I the unit tensor. Total specific energy e 
can be written as 

e = h −
p
ρ+

V2

2
, (5)  

where h is specific enthalpy. Additionally, the effects of surface tension 
are included in the procedure with a body force in the momentum 
equation, according to the continuum surface force model [38]: 

Fvol = γ
ρκg∇αg

1
2

(
ρg + ρw

), (6)  

where γ is surface tension, αg gas volume fraction field, and ρ, ρg, ρw the 
densities of the mixture, gas, and liquid phase, respectively. κg denotes 
bubble surface curvature, which is calculated as κg = ∇⋅ n

|n|, where n is a 
bubble surface normal, obtained as a gradient of the gas volume fraction 
field. 

A modified version of the Tait’s equation of state is employed to 
consider the nonlinear compressibility of water: 
(

ρ
ρref

)n

=
K

Kref
, (7)  

where the bulk modulus of water K at pressure p is calculated as K =

Kref + n(p − pref). The term n is the density exponent and Kref the refer
ence bulk modulus at the reference pressure pref . For water, we consider 
the values of n = 7.15, and Kref = 2.2 GPa, ρref = 998.2 kg/m3 at pref =

101325 Pa [39]. The bubble contents are modeled as air with the ideal 
gas law, which states 

ρ =
p

R*
airT

, (8)  

where a specific gas constant R*
air of 287 J/kgK for dry air is considered. 

Through this, we neglect the bubble’s vapor content and its mass 
transfer mechanisms – evaporation and condensation. Although vapor 
pressure is small in comparison to the internal bubble pressure and 
therefore does not noticeably effect the bubble dynamics in the presently 
considered case [30], the mass transfer on the other hand could. As the 
bubble collapses, its contents are compressed, which results in locally 
elevated temperatures and pressures. In the case of strong bubble 
compression, i.e. a strong collapse, a fraction of its vapor contents are 
lost to the ambient liquid through the process of condensation. Even 
though this does not significantly influence bubble dynamics until the 
first collapse, the amount of non-condensable gas in the bubble can 
affect the magnitude of bubble’s rebound and its subsequent oscillations 
[40]. Due to the complex nature of mass transfer mechanisms, their 
adequate consideration remains one of the challenges up to this day. 
While it is true that they can be included with empirical models, this 
approach requires fitting of empirical model parameters to match the 
obtained numerical results to the experimental data for each separate 
case, which limits its applicability for smaller micro and nano bubbles. 
Even though that the present paper considers inertially collapsing 
bubbles, the intensity of their collapse is relatively weak 
(Rmax/Rmin ∼ 10) in comparison to laser induced bubbles, where the 
ratio between the maximum and minimum bubble ratio can exceed one 
hundred. Based on all this, we see the use of ideal gas law as a fair 
approximation for the presently considered phenomenon. 

For all calculations the Pressure-implicit with splitting of operators 
(PISO) pressure–velocity coupling algorithm [41] was employed, along 
with a first order implicit temporal discretization. Pressure staggering 
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option (PRESTO!) scheme [42] for the spatial discretization of pressure 
was used, while density, momentum, and energy were discretized using 
the second order upwind scheme. A Piecewise linear interface calcula
tion (PLIC) geometric reconstruction scheme [43] was used as a nu
merical implementation of the VOF method to capture the water-bubble 
interface. Boundary conditions at the end of the computational domain 
were set to wave non-reflecting pressure outlet, which was placed 
reasonably far away from the bubble (∼ 100Rmax) to minimize its in
fluence on the bubble-liposome interaction. For a further insight into the 
numerical model readers are referred to [30], where the considered 
theoretical background and a numerical model description is given in 
more detail. 

Additionally, we utilize a spring-based dynamic mesh smoothing 
method to adapt the numerical grid of the fluid domain to the bilayer’s 
movement during each FSI coupling iteration step. In this method the 
edges between mesh nodes in the fluid domain are represented as a 
network of linearly elastic springs that obey the Hooke’s law. Dis
placements of the internal mesh nodes are calculated according to the 
user specified spring constant factor and the obtained displacements of 
the lipid bilayer from the structural model. 

2.2. Structure dynamics model 

The envelope of a liposome is modeled as a thin spherical shell 
structure, as the ratio of bilayer thickness τ to liposome radius RL can be 
neglected in comparison with unity for giant unilamellar vesicles 
(τ/RL < 1/100). Through this we are able to consider the envelope’s 
macroscopic properties, such as areal expansion and bending stiffness, 
but omit modeling of the actual molecular dynamics on a local, nano and 
subnanoscale. The dynamic response of a shell structure to the bubble- 
induced loads is resolved using a nonlinear finite element method 
based transient structural solver [44]. The time-varying displacements, 
strains, and stresses of the envelope are obtained by solving the 
following equation of motion 

Mü+Cu̇+Ku = f, (9)  

where M, C, and K represent the corresponding mass, damping, and 
stiffness matrices of the structure, respectively. f and u denote the load 
and nodal displacement vectors, whereas on overdot represents the 
derivative with respect to time. Large deflections are considered and 
true stresses and strains are considered in the model as vesicles are ex
pected to exert a high level of compliance. 

The displacement vector u can be obtained from u = x − X, where x 
and X correspond to the nodal position vectors in the deformed and 
undeformed state, respectively. From this the deformation gradient 
tensor F can be obtained as 

F = I+
∂u
X
, (10)  

where I denotes the identity matrix. The deformation gradient is a 
second-order tensor, which can be decomposed into a product of rota
tion R and right stretch tensor U. Logarithmic strain tensor ε (also known 
as true or Hencky strain) is defined as 

ε = lnU, (11)  

and can be calculated at the locations of the element integration points 
through the spectral decomposition of U. 

The numerical model uses a generalized Hilber-Hughes-Taylor-α 
method [45] for implicit time integration and a full Newton–Raphson 
method in which the stiffness matrix is updated at every equilibrium 
iteration [46]. Both methods come as one of the standard options in the 
utilized structure dynamics solver [44]. The shell itself was geometri
cally defined with a surface through its mid-plane and was discretized 
with second order shell elements with four in-plane integration points 
(element SHELL281). Three integration points through the thickness of 

the shell were considered, which correspond to its mid, bottom, and top- 
surface. The last two are offset in the normal direction of the mid-surface 
for the half of the shell’s thickness (± τ/2). 

2.3. Material model 

The DOPC bilayer is modeled as a linearly elastic material with the 
equivalent elastic modulus of E = 53.3 MPa and Poisson’s ratio of ν =

0.485 [47]. The considered value of elastic modulus E is obtained over 
the whole area of interest on the σ − ε curve, bounded by the material 
failure criterion of ε*

p (see Appendix A). Through this, we also indirectly 
account for stress-softening of the material at larger strains. The bilayer 
thickness τ0 is taken to be 4 nm in its undeformed state. Material 
damping and viscoelasticity in the present case are not considered since 
viscous dissipation in the adjacent aqueous phase dominates the dy
namic response of vesicles to macroscopic shear deformations [48]. 
Additionally, according to Wu et al. [49] the viscoelastic relaxation 
parameter for giant lipid bilayer vesicles is in the order of 0.1 s, which by 
several orders of magnitude exceeds the duration of herein considered 
phenomenon. The material density of a DOPC bilayer is set to 1009 kg/ 
m3 [50], which is ∼ 1.01ρw, as common for phospholipids. 

Material failure and pore formation within the bilayer are not 
directly modeled but estimated by comparing the obtained stresses and 
strains in the envelope with the reported bilayer rupture thresholds from 
the literature. Bilayer rupture is generally considered to occur at ten
sions γ from 1 to 25 mN/m [51–53], which corresponds to areal strains 
in the order of 2 to 5%. Nevertheless, Evans et al. [54] showed that the 
ultimate membrane tension before its rupture is not a static material 
property, as it can for DOPC bilayers vary from 6 mN/m to 13 mN/m for 
loading rates of 0.07 mN/m/s and 25 mN/m/s, respectively. This data 
suggests that membrane rupture tension largely depends on the loading 
rate. 

Additionally, the authors [54] identified two different dynamic re
gimes of membrane strength, a low-strength cavitation-limited and a 
high-strength defect-limited regime, with a transition at loading rates 
around 10 mN/m/s for DOPC bilayers. Due to the significantly shorter 
time scale of the considered phenomena in the present case (t ∼ 10 ns), 
here encountered loading rates exceed the experimentally achievable 
values by several orders of magnitude (present loading rate ∼ 109 − 1010 

mN/m/s versus the peak experimental loading rates ∼ 102 mN/m/s 
[54,55]). According to the defect-limited kinetic model for membrane 
failure [54], the rupture strength rises logarithmically with the loading 
rate, and should be between 80 and 95 mN/m for the present case. To be 
more precise, the model predicts a critical membrane tension of 92 mN/ 
m for a loading time of 10 ns. Although this value is obtained for a 
loading rate that highly surpasses the scope of experimental observa
tions, it fits surprisingly well with the obtained value of 90 mN/m from 
molecular dynamics simulations for a liquid-phase DPPC bilayer [56]. 
The reported critical tension corresponds to the lateral membrane stress 
of σ* = 20 MPa, which was later also shown by Xie et al. [57] to result in 
bilayer rupture in a matter of a few nanoseconds, regardless of the 
loading regime. Additionally, Leontiadou et al. [56] also reported that 
uniform lateral loading of 5 MPa is already enough to cause unstable 
growth of pre-existing meta-stable pores, which could be thought of as a 
secondary failure criterion. 

Based on these values, we consider two membrane rupture criterions 
(see Appendix B). The primary failure criterion is related to the creation 
of a defect in the case of heavy lateral loading and is set at linear strain of 
ε*

p = 0.45, whereas the secondary criterion, connected to the expansion 
of pre-existing pores, is identified at ε*

s = 0.035. The likelihood of 
vesicle destruction can be thus estimated by the phenomenological cri
terion of maximum strain, where maximum principal strain in the 
bilayer is compared to both material failure thresholds, ε*

p and ε*
s . 
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2.4. Model coupling 

Both separate solvers, the fluid and structure dynamics model, are 
coupled together according to the partitioned iterative approach, to 
form the final FSI numerical model. The utilized model coupling 
framework [58] was previously shown to be capable of capturing 
complex multiphysics problems and has already been verified and 
validated in various engineering applications [59]. In this manner we 
consider both, the influence of liposome’s deformability on the sur
rounding fluid flow and bubble dynamics, and vice versa, which is 
crucial given the strong coupling nature of the phenomenon under 
consideration. Two-way coupling in the FSI model is achieved trough 
the exchange of loads and displacements of the coupling interface. In our 
case, both sides of the liposome’s envelope represent the fluid–solid 
interface, through which incremental displacements and forces are 
transferred at each coupling iteration. The following coupling solution 
procedure is applied within each coupling iteration:  

• the structural solver resolves the bilayer’s response to the recieved 
loads,  

• incremental displacements of the bilayer are transferred from the 
structural to the fluid solver,  

• computational mesh of the fluid domain is updated according to the 
received displacements,  

• the fluid solver computes the corresponding solution,  
• normal and shear forces acting on the bilayer are transferred back to 

the structural solver as external loads. 

The given procedure is repeated until the desired level of data 

transfer convergence in reached, which is then followed by the advance 
of the whole system to the next time step. More precisely, root mean 
square convergence is monitored for both data transfers, force and in
cremental displacement, at both FSI participants, fluid and structural 
dynamics solver. The exchange of data, i.e., loads and displacements at 
the FSI interface, is achieved through mapping, which establishes a link 
between both coupling participants at the beginning of the simulation. 
The profile-preserving and conservative mapping procedure was used 
for the exchange of displacements and forces, respectively. In the former 
case, the mapping weights were determined through the use of shape 
functions, whereas in the latter case the intersect-scatter–gather algo
rithm was used [58]. 

2.5. Model setup 

As already mentioned, we consider a single cavitation bubble of 
radius R0 = Rmax = 1 μm and a nearby liposome of radius RL = 1 μm, 
both at equilibrium with an initial ambient pressure of one atmosphere 
p∞,0 = 101325 Pa and an ambient temperature of 20◦C. According to the 
Young–Laplace equation the corresponding internal bubble pressure 
amounts to 2.47 × 105 Pa. Inertial bubble collapse is induced with a 
sudden ambient pressure increase to p∞ = 107 Pa, which is a typical 
value one could expect to occur on here considered spatial (∼ 1 μm) and 
temporal (∼ 10 ns) scales in the case of hydrodynamic cavitation. To 
further clarify, this value does not represent the operating pressure of a 
given hydraulic system, but rather one that can locally occur within a 
cavitating flow, e.g. the ambient pressure of a microbubble increases due 
to a nearby or surrounding bubble cloud collapse [15]. 

A scheme of the considered phenomenon is shown in Fig. 1, where a 
non-dimensional stand-off distance parameter δ is defined as δ = d/Rmax 

(also commonly recognized as γ in studies of near-wall bubble collapse), 
which is consistent with previous investigations of Le Gac et al. [23]. 
Bilayer’s local element coordinate system is defined in accordance with 
here shown coordinates ϕ and θ, which follow its local deformations 
through time. Coordinate ϕ follows the tangential direction of the en
velope in the here considered plane, whereas θ marks the direction of 
revolution about the axis of symmetry. 

Results are reported for twelve cases of bubble-liposome interaction, 
corresponding to the following values of bubble-liposome distance 
parameter: δ = 1.15, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.75, 2, 2.25, 2.5, and 3. 
Additionally, cases with δ between 1 and 1.15 were also attempted, but 
resulted in termination even before the first bubble collapse, due to 
severe wrinkling and deformations of the bilayer, which led to numer
ical instabilities and a failure in convergence of the structural solver. 
Surface tension and viscosity of water were set to γw = 72.8 × 10− 2 N/m 
and μw = 10− 3 Pa⋅s, whereas viscosity of air is also considered with μg =

1.8 × 10− 5 Pa⋅s. Thermal conductivity of water and air are considered as 
kw = 0.6 W/mK and kg = 0.0242 W/mK, respectively. Boundary con
ditions at the end of the computational domain were set to wave non- 
reflecting pressure outlet with a static pressure of 107 Pa, temperature 
of 20◦C, and volume fraction of water αw set to unity. No slip boundary 
condition is considered at the vesicle’s shell. 

All simulations are carried out for an axisymmetric case on a wedge 
geometry, which revolves around the axis of symmetry with the thick
ness of one computational cell (see Fig. 2 (a)). Computational mesh for 
the fluid domain consists of orthogonal cells with a constant resolution 
of 200 cells per initial bubble radius R0 in the region of bubble-liposome 
interaction and gradually coarsened cells with the distance towards the 
domain’s edge, as can be seen in Fig. 2 (b). This spatial resolution was 
chosen based on the results of the grid convergence analysis (see Section 
3) and the available computational resources. Non-orthogonal quadri
lateral cells were used in the direct vicinity and within the liposome’s 
shell to transition between the spherical envelope and the orthogonal 
cells in the rest of the computational domain. The fluid domain can be 
further separated into two zones: a static mesh region and a dynamic 

Fig. 1. A schematic representation of the considered setup – an initially stable 
bubble with radius R0 (left) in vicinity of a freely submerged spherical liposome 
with radius RL (right). In addition, the main regions of the liposome’s envelope 
are also marked: proximal and distal pole (also tip, proximal and distal refer to 
the position in regard to the bubble) and the equator. 

Fig. 2. (a) A schematic representation of the utilized wedge geometry and the 
whole fluid computational domain. The wedge revolves around the axis of 
symmetry (dashed black line) with the thickness of one computational cell. The 
fluid domain is divided into two sections: a static mesh region (blue) and dy
namic mesh smoothing region (red). Please note that the dimensions of the 
computational domain on are not directly proportional to the actual geometry 
for the sake of figure readability. (b) The computational mesh in direct vicinity 
of the FSI region showing mesh of the fluid domain (blue and red fill) and the 
solid domain (green fill). Please note that only a fraction of computational cells 
is shown and the solid domain is offset along the black dashed lines for the sake 
of visibility. 
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mesh smoothing region. Numerical grid in the latter region is dynami
cally adapted to the bilayer’s movement during each FSI coupling iter
ation step, as described in Section 2. Multiple values of the spring 
constant factor were tested during the model setup. In the end, the value 
of 0 was used for all simulations in order to preserve the quality of the 
mesh in the direct vicinity of the bubble and liposome. In this way the 
displacements of the coupling interface, i.e., the liposome’s envelope, 
were absorbed by larger cells at the edge of the dynamic mesh 
smoothing region. 

The shell itself was geometrically defined with a surface through its 
mid-plane, which in the present case resembles a thin slice of a sphere 
with radius of 1 μm. It was discretized with quadrilateral second order 
shell elements with four in-plane integration points (element SHELL281) 
in the structural solver and was meshed to be conformal with the mesh of 
the fluid–solid interface in the fluid domain. Two triangular elements 
were also used, one at each pole, where the FSI interface meets the axis 
of symmetry. The total number of computational cells in the fluid 
domain ranged between 330 and 450 thousand, with 190 to 275 thou
sand of them being included in the dynamic remeshing process. A con
stant computational time step was set to 4 ps, which resulted in 6250 
time steps for each case. This time step was chosen with respect to the 
preliminary simulations, from which the discretization errors were 
estimated. The corresponding results are given in the beginning of 
Section 3. 

Approximately four coupling iterations per time step were performed 
on average to reach data transfer convergence target of 10− 3. Conver
gence criteria for the fluid dynamics solver were set with the values of 
scaled residuals for continuity and momentum equations to 10− 6, and 
energy equation to 10− 9. In addition, custom convergence criteria were 
also set to 10− 6 for bubble radius, along with the integrals of pressure 
and shear stresses over the coupling interface, i.e., both sides of the li
posome’s envelope. Convergence criteria in the structural solver were 

set as default vector norm checks (L2 norm for force, moment, rotation 
and infinity norm for displacement) with the specified tolerance of 10− 6. 
Computational times varied from 7 to 11 days per case, with each being 
computed on a 24 core HPC cluster node. Cases with larger values of δ 
required longer computational times due to the larger extent of their 
mesh adaptation region in the fluid domain, which turned out to be the 
limiting factor for the use of even finer computational meshes without 
increasing the utilized processing power. 

3. Results 

In this section, we address the key topic of the present study – a 
bubble-liposome interaction on a micro scale. The results cover the ef
fects of a nearby liposome on bubble collapse dynamics and vice versa. 
First, we present the results of preliminary simulations, from which the 
finally considered spatio-temporal resolution was chosen. Preliminary 
results correspond to the case with δ = 1.2 and are given in Table 1. 
They include the estimation of discretization errors and Richardson 
extrapolation of the normalized minimum bubble radius Rmin/R0 and 
peak membrane εm

max and bending strains εtb
max of the bilayer. To be more 

thorough, εm
max stands for overall peak strains in the middle throughout 

the bilayer thickness, whereas εtb
max represents overall peak strains in the 

envelope at its top/bottom plane. Midpoint strains εm can be understood 
as a measure of bilayer stretching, while strains at the top or bottom of 
the envelope εtb point to the magnitude of bilayer bending. When 
εm ≈ εtb, bilayer bending is negligible and lateral stretching can be un
derstood as the main driver of liposome’s deformation. 

The results show convergent behavior towards the grid-independent 
solution, however it is clear that the rate of convergence is much higher 
for the bilayer’s response, which implies that the driving process of 
bubble dynamics primarily determines the required spatio-temporal 
resolution in the present case. As the peak velocities of the bubble’s 
wall reach the order of ∼ 500 m/s, the finally chosen resolution of Δx =

5 nm and Δt = 4 ps ensures that the maximum Courant number in the 
fluid domain will not exceed 0.4 at any point of the simulation. 

We continue with the effects of a nearby liposome on bubble collapse 
dynamics. The obtained results show spherical collapses and rebounds 
of bubbles, which implies that the presence of a nearby liposome does 
not significantly affect the dynamics of an unattached bubble with δ⩾ 
1.15 on the considered spatial scale of ∼ 1 μm. This is consistent with the 
results of our previous study [30], where the presence of a similarly 
sized rigid spherical particle had already a relatively small effect on the 
dynamics of nearby bubbles with δ > 1. Among all the cases, the first 
and second bubble collapses occur at the time of tc,1 = 9.94 ns and tc,2 =

21.4 ns, respectively. The corresponding bubble radii are Rmin,1 = 0.114 
μm and Rmin,2 = 0.227 μm, whereas the peak bubble rebound is achieved 
at t = 15.2 ns with R = 0.523 μm (see Fig. 3). The obtained radii Rmin,1 

coincide with the value for a spherically symmetric bubble collapse, 
from which we can estimate the discretization error of Rmin,1 and the 
corresponding peak pressure values of 1.32 GPa to be in the order of 5% 
(see Table 1 in [30]). 

Table 1 
Estimation of discretization errors and Richardson extrapolation of the normalized minimum bubble radius Rmin/R0 and peak membrane εm

max and bending strains εtb
max 

of the bilayer for the case with δ = 1.2. The results in the top row correspond to the finally chosen spatio-temporal resolution, whereas the rest serve as a means to 
estimate the magnitude of discretization errors.  

Spatial resolution [nm] Temporal resolution [ps] Rmin/R0 [–]  Estimated error [%] εm
max [–]  Estimated error [%] εtb

max [–]  Estimated error [%] 

5 4 0.114 − 5.0 0.123 0.18 0.314 − 0.11 
20 8 0.099 − 18 0.127 3.3 0.264 − 16 
10 4 0.108 − 9.9 0.124 0.75 0.314 − 0.15 
5 2 0.116 − 3.6 0.123 0.17 0.315 − 1.4× 10− 3  

1/∞  1/∞  0.120*   0.123**   0.315**   

* Based on the estimation of discretization errors from Zevnik and Dular [30]. 
** Estimated values according to the Richardson’s extrapolation of the obtained results. 

Fig. 3. The obtained temporal progression of bubble radius R for the case with 
δ = 1.15. The curves from all other cases overlay the one shown here, which 
indicates that the presence of a nearby liposome does not affect the dynamics of 
an unattached bubble with δ⩾1.15. 
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A more detailed insight into bubble-liposome interaction for the case 
with δ = 1.2 is given in Fig. 4 and 5. Here, the left column shows the 
contours of the pressure (top) and velocity (bottom) fields in the fluid 
along with the bubble wall (left) and liposome’s envelope (right). The 
right column shows the corresponding spatial distribution of liposome 
shell midpont strains εm

ϕ and εm
θ with respect to the circumferential di

rection ϕ (see Fig. 1). The values of ϕ range between 0 and π, which 
correspond to the proximal and distal pole (also tip) of the liposome, 
whereas its equator lies at π/2. The term waist refers to the central area 
of the liposome near the equator. Both local directions of ϕ and θ 
coincide with both principal directions, i.e. the directions where the 
normal strain vectors are maximized. To be more thorough, εm stands for 
strains in the middle throughout the bilayer thickness and in the di
rection marked by the subscript, e.g. εm

θ (π/2) corresponds to midpoint 
strain in the local element direction of θ at the location of ϕ = π/2. 

Fig. 4 (a) shows a state at the time of 4 ns. Due to a sudden increase of 
ambient pressure the bubble starts to shrink, which results in a sink-type 
velocity field in the ambient liquid. A relatively continuous pressure and 
velocity fields can be observed in the direct vicinity of the envelope and 
the boundary layer can be barely identified, as the vesicle moves and 
deforms with the surrounding liquid. Since velocity field decays 
approximately with the square of a distance from the bubble wall, a 
nearby vesicle is exposed to a velocity gradient field which induces 

spatially uneven envelope stretching in the axial direction and 
contraction perpendicularly to it. The latter causes compressive strains 
εm

θ throughout the whole envelope, with the peak at the proximal pole 
(εm

θ = − 0.035 at ϕ = 0). On the other hand, three zones can be identified 
for strains εm

ϕ in the tangential direction ϕ - a compressive zone at both 
poles and a tensile zone at the waist. 

As the bilayer at both poles experiences lateral compression, this can 
lead to buckling related instabilities in form of local bilayer wrinkling. 
We use the following first-order approximation to estimate the critical 
loads for the onset of buckling in thin elastic spherical shells [60]: pcr =

2E/
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3(1 − ν2)

√
(τ0/RL)

2, from which the critical strain can be derived as 
εcr ≈ (ν − 1)/

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3(1 − ν2)

√
(τ0/RL). With ν = 0.485, τ0 = 4 nm, and RL =

1μm, the critical strain is approximated at εcr = − 1.4× 10− 3. One can 
notice, that compressive strains at the proximal pole (εm

ϕ ≈ εm
θ =

− 0.035) are far beyond the estimated critical value of εcr = − 1.4×

10− 3, which results in a gradual development of wrinkles through time. 
This can be also seen in Fig. 6 (a), which shows the temporal progression 
of peak shell strains at midpoint εm and top/bottom εtb through its 
thickness. The onset of wrinkling can be identified as a sudden split 
between curves εm and εtb at the time around 6 ns, which marks the 
occurrence of severe bilayer bending. 

Fig. 4 (b) shows the state of the system at 8.6 ns, when the bubble 

Fig. 4. A more detailed insight into the 
bubble-liposome interaction for the case 
with δ = 1.2, at the time (a) before the 
onset of bilayer wrinkling, (b) when 
bubble reaches half of its initial size, 
and (c) during the bubble collapse, 
when peak bilayer wrinkling occurs 
(magnified envelope showing wrinkling 
of the proximal liposome tip is given in 
the top right corner of the correspond
ing contour plot). Left column shows 
the contours of the pressure (top) and 
velocity (bottom) fields in the fluid 
along with the bubble wall (left) and 
liposome’s envelope (right). The right 
column shows the spatial distribution of 
envelope’s midpoint strains εm

ϕ and εm
θ in 

local directions of ϕ and θ, that also 
correspond to both principal directions.   
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shrinks to half of its initial size. The pressure and velocity fields still 
show a strong resemblance to ones in the case of an unbounded bubble 
with the development of a ridge-like pressure field just outside the 
bubble wall. The only directly visible disturbance can be observed at the 
proximal pole of the vesicle, where the pressure field is locally altered 
due to changes in the bilayer curvature and the occurrence of wrinkling. 
The latter also affects the spatial distribution of midpoint strains, which 
exhibit strong oscillations at the proximal pole. Regardless of that, the 
vesicle’s waist continues to experience severe stretching in the circum
ferential direction with the peak εm

ϕ of 0.1 appearing near the point at 
ϕ = π/4. Similar strain distribution can be seen at the time of 9.4 ns 
(Fig. 4 (c)), when overall maximum strains in the envelope occur at the 
proximal pole. This can be also seen on Fig. 6 (a) as a peak of εtb

ϕ = 0.31, 
which exceeds peak midpoint strains εm

ϕ by almost threefold. Again, this 
indicates the occurrence of severe local wrinkling of the bilayer, which 
can be also seen in the magnified box in the top right corner of the 
attached contour plots. Please note, that digital magnification of sub
figure (c) is required to observe wrinkling in the non-magnified instance 
of the proximal liposome tip due to the small wavelength of ∼ 25 nm. 

During the bubble collapse at 9.94 ns, both internal bubble pressure 
and temperature locally reach their peak values in the order of 1.3 GPa 
and 3500 K. After the peak collapse point is reached, the bubble 

rebounds and starts to expand. Additionally, a shock wave is emitted 
into the surrounding liquid and overall peak liposome stretching at the 
waist with εm

ϕ = 0.12 is reached. Peak vesicle stretching also coincides 
with peak displacement of the proximal tip, which reaches its maximum 
just before the shock wave impact. As the shock wave propagates 
through the ambient liquid it attenuates with approximately the inverse 
of the distance from the bubble center (∼ 1/r) and changes the velocity 
field to the source-like type. It reaches the proximal liposome tip at the 
time of 10.4 ns with the magnitude of 100 MPa (Fig. 5 (a)), which is also 
accompanied with a sudden change in the direction the tip’s movement. 
The magnitude of shock wave front attenuation is perhaps the most clear 
from the comparison between subfigures (a) and (b), where a twofold 
decrease of its magnitude can be observed upon the propagation of less 
than a half of the liposome’s length. Neither of the evaluated cases 
points towards a reflection of the pressure wave from the liposome’s 
envelope, which can be explained by the fact, that their envelope is 
extremely compliant and has almost identical density to water. 
Furthermore, the liposome’s interior consists of water, which also plays 
an important role in interaction with pressure waves. Overall, the dif
ference in acoustic impedance between water and liposomes seems to be 
negligible to cause noticeable disturbance in shock wave propagation. 

As the shock wave propagates through the envelope (Fig. 5 (b)) it 
causes a second local maximum of liposome stretching at the waist. This 

Fig. 5. A more detailed insight into the 
bubble-liposome interaction for the case 
with δ = 1.2, at the time (a) shortly 
after the bubble collapse, when shock 
wave reaches the liposome, (b) during 
shock wave propagation through the 
vesicle, and (c) during the second bub
ble collapse. Left column shows the 
contours of the pressure (top) and ve
locity (bottom) fields in the fluid along 
with the bubble wall (left) and lipo
some’s envelope (right). The right col
umn shows the spatial distribution of 
envelope’s midpoint strains εm

ϕ and εm
θ in 

local directions of ϕ and θ, that also 
correspond to both principal directions.   
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can be seen in Fig. 6, that shows temporal progression of peak εm
ϕ at the 

time of ≈ 11 and 12 ns for cases (a) δ = 1.2 and (b) δ = 1.75, respec
tively. Additionally, on subfigure (a) one can also notice a drop in top/ 
bottom shell strains εtb after bubble collapses, which implies a gradual 
smoothening of the wrinkles. This is to be expected, since after shock 
wave propagation the envelope’s movement is reversed towards its 
initial undeformed state. Consequently, compressive strains at the 
proximal tip slowly decay, indicating a transition to a tensile phase. The 
expanding bubble reaches the maximum size of the rebound phase with 
R = 0.523 μm at t = 15.2 ns, after the pressure wave has already prop
agated past the vesicle. This is soon followed by the less intense second 
bubble collapse at tc,2 = 21.4 ns with Rmin,2 = 0.227 μm. The second 
collapse also results in the emission of a shock wave, although weaker in 
magnitude and more spatially flattened due to the slower process of the 
collapse. After all, a large part of the bubble’s energy has been already 
lost with the emission of the first shock wave. 

Fig. 5 (c) shows a state during the second bubble collapse. Here, a 
boundary layer at the vesicle’s envelope is more prominent because the 
elastic effects of the bilayer come to effect after the first collapse. This 
can be also seen from the directions of velocity vectors at the bilayer, 
which are not directly aligned with the sink-type surrounding flow, 
implying the presence of vesicle’s own elastic oscillations. Looking at 
the corresponding spatial distribution of shell midpoint strains, we can 
observe that the proximal tip is under uniform stretching with εm =

0.034. Time-wise, it’s peak magnitudes occur during the time of second 
bubble contraction, which corresponds to local maximums of εm

θ (Fig. 6) 
at 16.2 and 18.1 ns for cases (a) δ = 1.2 and (b) δ = 1.75, respectively. 
On the other hand, the distal pole of the vesicle remains in uniform 
compression for the whole simulated time of 25 ns and the values for the 
most part exceed the approximated critical value of εcr = − 1.4× 10− 3. 
Although we noticed minor bending of this region upon a more thorough 
inspection of the results, it remains invisible to the naked eye and 
negligible in terms of through-thickness distribution of shell strains. 

A comparison between both cases in Fig. 6 reveals a relatively similar 
temporal progression of peak midpoint shell strains εm between cases 
with δ = 1.2 and 1.75. Peak strains in tangential direction εm

ϕ increase 
with time and reach their maximum around the time of the first bubble 
collapse. Shortly after, another lesser local maximum can be observed, 
which is related to shock wave propagation through the liposome. Both 
maximums occur at the liposome’s waist, at the point with the initial 
coordinate of ϕ ≈ π/4. On the other hand, the envelope is for the most 
part compressed in direction of θ (revolution about the axis of symme
try). One exception is the emergence of a tensile zone at the proximal 
pole after the bubble rebounds. Therefore peak values of εm

θ progres
sively increase in an oscillating manner and merge with εm

ϕ after the 
second bubble collapse, which results in uniform lateral stretching of the 
proximal tip. A local maximum of peak εm

θ can be identified for all cases, 

at the times between 15 and 20 ns. On the contrary, peak top/bottom 
shell strains εtb show less similarities between the cases. Generally, they 
can be classified into two groups, depending on the development of 
bilayer wrinkling. From small enough values of δ (subfigure (a)) a 
noticeable split between curves εtb and εm can be seen around the time of 
6 ns. As already mentioned before, this marks the onset of severe bilayer 
bending and wrinkling, which reaches its maximum around the time of 
the first bubble collapse. Later, when the bubble rebounds and the ve
locity field is reversed to a source-type, the wrinkles gradually smoothen 
out. This can be seen as a decrease in εtb and later its merging with the 
curve εm. With larger values of δ (subfigure (b)) liposome wrinkling 
becomes less intense and progressively vanishes. 

All mentioned local maximums of envelope strains are given in Fig. 7 
in relation to the initial bubble-liposome distance δ. In subfigure (a), 
both curves of εm

ϕ correspond to peak bilayer extension at the waist, 
which occurs at the first bubble collapse (solid line) and shortly after, 
when a shock wave travels through the liposome (dashed line). One can 
notice, that the dashed curve consistently stays below the solid line, 
which implies that in the present range of parameter δ, overall peak 
liposome stretching occurs at it’s waist during the time of the first 
bubble collapse. The third curve, εm

θ , corresponds to peak bilayer 
extension at the proximal tip, which occurs during the second bubble 
contraction. For all three sets, the obtained results from the simulations 
(hollow circles) monotonously descend according to the power func
tions (R2 > 0.995) with exponents of − 2.75, − 3, and − 5. A similar trend 
can be seen for cases with δ > 1.75 in subfigure (b), which shows overall 
maximum values of top/bottom shell strains εtb in both principal di
rections. Here, we can clearly notice the development of bilayer wrin
kling at the proximal tip for cases with δ < 1.75, where a power law-like 
behavior transitions to a polynomial one, which surpasses the corre
sponding midpoint strains by a much as twofold. Although the temporal 
onset of peak strains εtb varies with δ it generally occurs around the time 
of the first bubble collapse. 

The magnitude of bubble’s liposome destruction potential can be 
estimated upon comparison of the obtained results with both previously 
determined bilayer rupture thresholds ε*

p = 0.45 and ε*
s = 0.035 (see 

Section 2.3 and Appendix B). First, we can conclude that none of the 
numerically evaluated cases with a bubble-liposome distance parameter 
δ between 1.15 and 3 exceeds the primary failure criterion ε*

p = 0.45, 
which is related to the creation of a defect and a subsequent membrane 
rupture due to heavy lateral loading. On the other hand, for small 
enough values of δ, we can notice that both liposome stretching (εm) and 
wrinkling (εtb) can surpass the secondary failure criterion ε*

s = 0.035 by 
as much as ten-fold. In the case of pre-existing pores in the bilayer can 
we therefore expect the damage to occur at the waist of the vesicle for δ 
below 1.9 and at the vesicle’s pole for δ under 1.25. Additionally, bilayer 

Fig. 6. Temporal progression of peak shell strains at midpoint εm and top/bottom εtb for the case with (a) δ = 1.2 and (b) δ = 1.75. The directions of both principal 
shell strains ε1 and ε2 correspond to the local element directions of ϕ and θ, respectively. 
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wrinkling at the nearer pole could also aggravate existing defects in 
cases with δ⩽1.6. 

4. Discussion 

In this section, the obtained results are further discussed and 

extrapolated with respect to liposome destruction by hydrodynamic 
cavitation. First, we extrapolate the obtained peak strains related to 
local bilayer stretching at the proximal vesicle’s tip εtip and waist εwaist 

(see Fig. 8), which correspond to εm
θ and εm

ϕ in Fig. 7 (a). This is done to 
estimate the needed value of non-dimensional bubble-liposome standoff 
distance δ to achieve severe bilayer stretching beyond its primary failure 
criterion ε*

p = 0.45 and thus vesicle’s destruction on a nanosecond 
temporal scale. Both extrapolations (solid curves) are based on the ob
tained results from the simulations (hollow circles) and follow power 
functions with exponents of − 2.75 (R2 = 0.998) and − 5 (R2 > 0.999) 
for peak liposome strains at its waist and tip, respectively. 

Both extrapolated curves meet the value of ε*
p = 0.45 at δ ∼ 0.75, 

which is in remarkably good agreement with the values reported from 
previous experimental studies addressing single bubble-cell interaction 
of Le Gac et al. [23]. They used single laser-induced cavitation micro
bubbles to porate suspended human promyelocytic leukemia cells and 
observed cell lysis probability of more than 75% for δ⩽0.75. As already 
mentioned in Section 1, similar effective distance for cell membrane 
poration was later also reported by Zhou et al. [22], who acoustically 
excited single laser-induced microbubbles in vicinity of a Xenopus 
oocyte. Despite the good match with both mentioned experimental 
studies, we acknowledge that the actual bubble dynamics and the 
deformation process of liposomes could be qualitatively different for 
small values of δ. This also holds for the cases where the bubble un
dergoes initial expansion before it collapses, which largely depends on 
the boundary conditions, type of cavitation, size of bubbles, etc. In this 
scenario, values of δ below 1.0 are not uncommon. For this reason we 
limit the extrapolation of data to δ > 1.0 and conclude that liposomes 

Fig. 9. (a) A linear relation (R2 > 0.999) between peak liposome length strains εL and peak local bilayer strains at the waist εwaist among all evaluated cases. (b) Peak 
length strains according to surrogate fluid particle movement simulations and actual FSI simulations of bubble-liposome interaction show a good level of agreement 
with maximum discrepancy of less than 3%. 

Fig. 7. Peak (a) shell midpoint strains εm and (b) shell strains at top/bottom εtb in both local directions ϕ and θ, marked by the subscript. Values are given in relation 
to the initial bubble-liposome distance δ. Curves in subfigure (a) represent the power law fits (R2 > 0.995) of the obtained results from the simulations (hol
low circles). 

Fig. 8. Peak values of local bilayer extension at the vesicle’s tip εtip and waist 
εwaist in relation to the initial bubble-liposome stand-off distance δ. Curves 
represent the power law fits of the obtained results from the simulations (hol
low circles) with R2 > 0.995. 
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with equilibrated envelopes, i.e., no pores are present in the bilayer, are 
not expected to be structurally compromised in cases with δ > 1.0, when 
a nearby collapsing bubble is not in their direct contact. As an approx
imation, this could be also extended to other liposome-like biological 
structures, such as single suspended cells (e.g. leukocytes [23], eryth
rocytes [28]) or cell’s organelles, although a special care would have to 
be given to the extent of their structural similarity to here considered 
giant unilamellar DOPC vesicles. 

However, from here obtained results we can expect local bilayer 
rupture in the case of pre-existing semi-stable defects, which could 
remain from previous mechanical stresses. The limiting values of δ are 
obtained from the intersections (red asterisk) of both curves represent
ing peak bilayer strains, εtip and εwaist, with the secondary failure crite
rion ε*

s = 0.035 at δ = 1.25 and 1.9, respectively. In other words, 
liposomes are expected to be unaffected for δ > 1.9, regardless of the 
existence of past bilayer defects. 

As already mentioned in the end of previous section, bilayer wrin
kling at the pole could also aggravate existing defects in cases with δ 
under 1.6, although it remains unclear whether it could also cause 
rupture of previously undamaged membranes. The reason for this is, that 
we were unable to extrapolate the obtained peak bending strains from 
Fig. 7 (b) below δ = 1.15 with a sufficient degree of confidence. After all, 
a relatively small region of 1.15⩽δ⩽1.5 is available for extrapolation of a 
polynomial-like trend, which can yield vastly different results. Therefore 
this remains as one of the challenges for our further investigations, 
where encountered numerical instabilities in the cases with δ < 1.15 
should be addressed more in-depth. 

Qualitatively, the presented results are also in good agreement with 
the findings of Marmottant and Hilgenfeldt [20], who experimentally 
showed that gently oscillating single bubbles excited by an ultrasound 
can already result in controlled deformation and lysis of DOPC vesicles 
of similar sizes. In their later work, [21] derived analytical predictions of 
vesicle shape progression and found two possible modes of liposome 
damage: a) pore formation at vesicle’s waist in the case of sufficiently 
large shear rates and b) liposome buckling at the poles in the case of 
sufficient liposome elongation. These predictions are further supported 
by the present numerical investigations. In addition to this, we also 
identified a third relevant mode of liposome damage in the case of an 
inertial bubble collapse – membrane poration at the liposome’s tip, 
which could occur during the contraction phase of a rebounding bubble. 

At this point, it might be worth mentioning again, that the reported 
values of effective distances for liposome poration are given solely for 
here considered mechanical effects that result from a single bubble 
collapse. It is known, that strong bubble collapses are also linked to 
chemical effects, which are caused by the homolysis of vaporous water 

molecules. This leads to formation of reactive oxygen species, namely 
.OH and .H [16]. The formation of reactive oxigen species can affect 
biological structures chemically, via oxidation, although the effective 
distances for the poration of various cells and bio membranes in the case 
of a single bubble collapse are not yet known [10]. 

Since we are addressing biological structures on a scale length of a 
few micrometers, liposome’s overall length extension εL = (L − L0)/L0, i. 
e. relative change in the distance between both poles, might be a more 
useful measure of it’s deformation and stretching as it could be also 
experimentally obtained. Upon evaluation of maximum length strains εL 
we noticed, that their peaks temporally coincide with overall peaks in 
local bilayer stretching at the waist εwaist, which occurs shortly after the 
first bubble collapse, just before the emitted shock wave reached the 
vesicle. Although this might not come as a surprise, we find the fact that 
they also show a clear linear relation of max(εwaist) ∼ 0.92max(εL)

(R2 > 0.999) between all evaluated values of δ quite interesting (Fig. 9 
(a)). After all, this shows that peak local bilayer’s extension at the waist 
is of a similar magnitude to vesicle’s overall extension between both 
poles and that their dependence does not change with bubble-liposome 
distance. However, we speculate that the slope of linear relationship is 
dependent on other geometric parameters, such as liposome-bubble size 
ratio. This can be explained by the velocity gradient distribution, which 
drives the envelope stretching. For an incompressible case of a 
collapsing spherical bubble, velocity gradient decays with a cube of the 
radial distance from the bubble’s wall, which implies that larger bubbles 
will cause a more even spatial distribution of bilayer stretching, whereas 
the effects of smaller bubbles will be more locally limited to the lipo
some’s proximal pole. 

At this point, it might be worth mentioning again, that we are here 
considering an initially stable microbubble in vicinity of an undeformed 
DOPC liposome of a similar size. Vesicle stretching and deformation is 
driven by an inertially collapsing bubble, which occurs due to a sudden 
increase in ambient pressure, e.g. collapse of a nearby bubble cluster 
results in emission of a shock wave, which propagates past the bubble- 
liposome pair and causes the bubble to collapse. Nonetheless, when 
one considers the phenomenon of hydrodynamic cavitation, many other 
scenarios of bubble behavior are to be expected, depending on the 
development of the cavitating flow. For example, many bubbles expe
rience significant growth due to an initial ambient pressure decrease and 
collapse only after they have reached a region of increased ambient 
pressure. Maximal size of those bubbles can thus exceed the size of 
nearby liposomes by a few orders of magnitude. Additionally, more than 
one bubble can be present in the vesicle’s vicinity, which could amplify 
or even dampen the loads exerted on the bilayer. Certainly, a plethora of 
questions arises when one considers the whole range of possible sce
narios. Although advanced numerical simulations can prove as an 
invaluable tool, especially when considering phenomena on very small 
spatial and temporal scales, their feasibility can be limited due to 
numerous constraints. For example, here utilized methodology is 
currently limited to the axially symmetric scenarios, as a full 3D model 
would be simply too computationally demanding. We face similar 
problems when considering much larger bubbles (Rmax≫RL) in vicinity 
of a micrometer-sized vesicle, as the needed spatial resolution does not 
scale with the bubble’s size due to a nearby liposome. After all, as 
already mentioned in Section 2.5, computational times for presently 
considered scenarios already amounted to between 7 and 11 days per 
case, with each being computed on a 24 core HPC cluster node. 

Having said that, we are still able to utilize much simpler and 
computationally less demanding models to estimate whether the 
collapse of larger bubbles also carries a potential for liposome’s 
destruction. To achieve this, we consider the observation from the pre
vious section, that the liposomes’s envelope movement closely follows 
the movement of the surrounding liquid until the first collapse, which 
implies its inertial movement with negligible elastic effects (witch an 
exception of bilayer wrinkling at the proximal pole). The reason for 

Fig. 10. Estimated values of peak liposome length strains εL with respect to the 
non-dimensional liposome-bubble stand-off distance δ and their size ratio 
RL/R0, which imply that larger bubbles carry a higher potential for causing 
stretching-induced liposome destruction. The corresponding results from FSI 
simulations are included with solid spherical markers. 
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fluid-like behavior of the vesicle can be found in a relatively high 
compliance of the bilayer, which is due to its inherent material char
acteristics, small thickness (∼ 4 nm), and similar density to water. As 
peak magnitudes of liposome stretching εwaist clearly correlate with peak 
length strains εL (Fig. 9 (a)) and both occur at the time of the first bubble 
collapse, we can thus predict peak values of εL by only resolving path
lines of two fluid particles corresponding to the location of both lipo
some’s poles. Through this we can omit the modeling of a full FSI system 
and only resolve a simpler case of spherical bubble collapse, since the 
presence of a nearby liposome does not seem to significantly affect the 
dynamics of a collapsing bubble of a similar size (see Section 3). This 
significantly simplifies the considered problem at hand and shortens the 
required computational times per case by more than a ten-fold. 

A comparison of the obtained results between the actual FSI and 
surrogate simulations is given in Fig. 9 (b). A very good agreement be
tween both curves can be observed, with maximum relative discrepancy 
of less than 3%, which occurs at the smallest considered value of δ =

1.15. For the most part, we attribute the difference to the emergence of 
bilayer wrinkling, which cannot be predicted by only resolving fluid 
flow. Further simplifications were attempted by resolving the Rayleigh- 
Plesset equation, without consideration of the water’s compressibility 
and emission of shock waves. This even further reduced the required 
computational times to a matter of seconds per case. Although it resulted 
in surprisingly good agreement with the obtained results from FSI sim
ulations for δ⩽1.5 (discrepancies within few percents), the relative error 
began to increase with larger values of δ due to the neglection of 
compressibility effect in form of continued ”liposome” stretching during 
the time of shock wave propagation from the collapsing bubble to the 
liposome’s proximal tip. 

In order to estimate whether larger bubbles are potentially more 
harmful in terms of induced peak liposome stretching, we performed a 
set of surrogate simulations with accounted compressibility effects for a 
parameter space of 1.15⩽δ⩽3 and 0.5⩽RL/R0⩽1.5. Here RL/R0 repre
sents the ratio between the initial liposome and bubble radius, respec
tively. The results are given in Fig. 10, from where we can observe that 
peak length strains εL exhibit monotonous and accelerated growth to
wards the smaller values of both parameters, δ and RL/R0. Additionally, 
the corresponding results from FSI simulations are included with solid 
spherical markers for reference. From this we speculate that larger 
bubbles carry a higher potential for causing stretching-induced lipo
some’s destruction, which will be more thoroughly addressed in the 
future. This could also explain previously observed efficiency of super
cavitation for eradication of bacteria, such as E. coli, L. pneumophila, and 
B. subtilis [6]. As large cavitation clouds form, shed, and collapse, they 
exert long lasting velociy gradients on bacterium’s envelope, which 
causes its stretching that eventually leads to poration and rupture of the 
inner cell membrane and subsequent cell lysis. 

5. Conclusions 

Hydrodynamic cavitation poses as a promising new method for 
wastewater treatment as it has been shown to be able to eradicate 
bacteria, inactivate viruses, and destroy other biological structures, such 
as liposomes. Although engineers are already commercializing devices 
that employ cavitation, we are still not able to answer the fundamental 
question: What precisely are the mechanisms of how bubbles can clean, 
disinfect, kill bacteria and enhance chemical activity?. 

The aim of the present paper was to research the dynamics of a single 
cavitation microbubble (Req = 1 μm) in vicinity of a DOPC lipid vesicle 
of a similar size, which allowed for a better explanation of the mecha
nisms behind the recently observed liposome destruction by the hy
drodynamic cavitation treatment [8]. Due to small spatial (∼ 1 μm) and 
temporal (∼ 10 ns) scales of the considered phenomenon a purely nu
merical approach was used. A coupled fluid–structure interaction model 
was employed, which considered the influence of liposome’s deform
ability on the surrounding fluid flow and bubble dynamics, and vice 

versa. Compressible multiphase flow was resolved using a finite vol
ume/volume of fluid method approach, whereas the liposome’s enve
lope was modeled as a compliant structure through the finite element 
method. Simulations were carried out for various cases of bubble- 
liposome standoff distance δ between 1.15 and 3. The required 
computational times varied between 4000 and 6500 core-hours, where 
cases with larger values of δ required longer computational times due to 
the larger extent of their mesh adaption region in the fluid domain. 

Regardless of the nearby liposome, the results show spherical bubble 
behavior, which points towards the negligible effect of vesicle’s pres
ence on the dynamics of a nearby unattached (δ > 1) and similarly sized 
cavitation bubble. As the bubble collapses due to increase in ambient 
pressure, vesicle deformation is driven according to the temporal 
development of the surrounding flow field. Three critical modes of 
vesicle deformation were identified and temporally placed in relation to 
their corresponding driving mechanisms: (a) unilateral bilayer stretch
ing at the waist of the liposome during the first bubble collapse and 
subsequent shock wave propagation, (b) local wrinkling at the tip of the 
liposome until the bubble rebounds, and (c) bilateral bilayer stretching 
at the tip of the liposome during the phase of a second bubble contrac
tion. Here, unilateral and bilateral stretching refer to the local in-plane 
extension of the bilayer in one and both principal directions, 
respectively. 

Based on the obtained results, effective distances for liposome 
poration and rupture were identified, which are in good agreement with 
previous bubble-cell interaction studies. Liposomes with equilibrated 
envelopes, i.e., no pores are present in the bilayer, are not expected to be 
structurally compromised in cases with δ > 1.0, when a nearby 
collapsing bubble is not in their direct contact. However, the critical 
dimensionless distance for vesicle poration and rupture is identified at 
δ = 1.9 for the case of an envelope with pre-existing pores. In other 
words, liposomes are expected to be unaffected for δ > 1.9, regardless of 
the existence of past bilayer defects. Results were further discussed with 
respect to vesicle destruction by the hydrodynamic cavitation treatment, 
where the influence of bubble-liposome size ratio was also addressed. A 
higher potential of larger bubbles for causing stretching-induced lipo
some destruction was identified, which can be also used to explain 
previously observed efficiency of supercavitation for eradication of 
bacteria [6]. 
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Appendix A. Determination of DOPC bilayer elastic modulus E 

Membrane tension in lipid bilayers can be generally written as [61]: 

γ = 2Π0

[

1 −

(
a0

al

)3
]

, (12)  

where Π0 is a tension-free surface pressure, which amounts to 50 mN/m for DOPC bilayers. Here, a0 = 0.68nm2 denotes the tension-free area per lipid 
molecule and al area per molecule corresponding to a given value of membrane tension γ. In the present case, it is more practical to express membrane 
tension in relation to areal strain εA = al/a0 − 1: 

γ

(

εA

)

= 2Π0

[

1 −

(
1

1 + εA

)3
]

. (13) 

Membrane tension can be also obtained by integration of average membrane stresses in the lateral direction σ throughout its thickness τ, which 
yields 

γ =
(σ1 + σ2)

2
τ0

(
1+ ετ

)
, (14)  

where τ0 = 4 nm is the initial bilayer thickness and ετ its strain corresponding to εA. Additionally, σ1 and σ2 represent both in-plane principal stresses. 
For the case of uniaxial stretching, where σ1 = σu and σ2 = 0, the areal strain εA and strain throughout the bilayer’s thickness ετ can be written as 

εu
A =

(
1 + εu)( 1 − νεu) − 1 and

ετ = −
2ν

1 − νεu,

(15)  

where ν = 0.485 denotes the Poisson’s ratio of the bilayer [47]. Considering this alongside Eq. (13) and (14), we can obtain the final relation between 
linear strain εu and the corresponding stress σu for the case an uniaxially loaded bilayer: 

σu =
4Π0

τ0(1 − νεu)

[

1 −

(
1

(1 + εu)(1 − νεu)

)3
]

. (16) 

The material elastic modulus E can be obtained as the initial slope of the obtained σu − εu curve, which amounts to 77.3 MPa. This is equivalent to 
the area stretch modulus kA = Eτ0/2(1 − ν) = 300 mN/m, which is reported for a full range of accessible tensions in the existing literature and is also 
applicable to the cases of fast hyper-stretching of the DOPC bilayer [62,61]. One can also notice that the relation in Eq. (16) shows the inherent 
material nonlinearity of the DOPC bilayer, which can be seen through stress-softening at large strains. 

Interestingly, the obtained relation shows a much lesser magnitude of stress-softening than one might initially expect from Eq. (12). Because of this, 
the consideration of material as linearly elastic can still provide relevant results if one considers the equivalent elastic modulus E over the whole area 
of interest on the σu − εu curve, bounded by the material failure criterion of ε* (see Fig. 11): 

E =
2

ε*2

∫ ε*

0
σu
(

εu
)

dεu. (17) 

Considering the primary failure criterion of ε*
p = 0.45 (see Appendix B) as the upper bound of ε*, we obtain the equivalent elastic modulus of E =

53.3 MPa. 

Fig. 11. The obtained σu-εu curve for the DOPC bilayer and the corresponding linearized material model E∊u.  
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Appendix B. Determination of DOPC bilayer material failure criteria 

Relevant failure criteria are established based on the critical lateral stresses and the corresponding surface tensions from the existing literature. The 
reported values are translated to the case of uniaxial loading. This allows for the use of phenomenological failure criteria in a general loading scenario, 
which does not necessarily result in uniform membrane tension. 

B.1. Primary failure criterion ε*
p 

According to the primary bilayer failure criterion, bilayer rupture is limited by the creation of a defect due to heavy lateral loading. For an 
equibiaxial loading case, where σ1 = σ2, the critical value for lipid bilayers is in the order of 20 MPa [56,54,57]. As defect formation and subsequent 
membrane rupture is related to the strength of intramolecular forces within the bilayer, we consider the same value of σ*

p = 20 MPa as the ultimate 
tensile strength on a temporal scale of ∼ 10 ns. The corresponding ultimate tensile strain from Eq. (16) amounts to ε*

p = 0.45. 

B.2. Secondary failure criterion ε*
s 

In this case, material failure is limited by the expansion of pre-existing meta-stable pores that can emerge from prior mechanical stresses. When 
pores and defects are already present in a bilayer, much lesser loads are needed to cause their uncontrollable expansion and subsequent membrane 
rupture. For the case of equibiaxial extension, the critical value is in the order of 5 MPa [56], which corresponds to the linear strain of 3.5%. As 
material failure is dependent on the expansion of the pore itself, we consider the corresponding strain of ε*

s = 0.035 as the secondary failure criterion 
on a temporal scale of ∼ 10 ns. According to Eq. (16) the critical strain corresponds to σ*

s = 2.57 MPa. 
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