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Challenges of numerical simulations of cavitation reactors for water 
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A B S T R A C T   

The research on the potential of cavitation exploitation is currently an extremely interesting topic. To reduce the 
costs and time of the cavitation reactor optimization, nowadays, experimental optimization is supplemented and 
even replaced using computational fluid dynamics (CFD). This is a very inviting opportunity for many de-
velopers, yet we find that all too often researchers with non-engineering background treat this “new” tool too 
simplistic, what leads to many misinterpretations and consequent poor engineering. 

The present paper serves as an example of how complex the flow features, even in the very simplest geometry, 
can be, and how much effort needs to be put into details of numerical simulation to set a good starting point for 
further optimization of cavitation reactors. Finally, it provides guidelines for the researchers, who are not experts 
in computational fluid dynamics, to obtain reliable and repeatable results of cavitation simulations.   

1. Introduction 

Cavitation i.e., the appearance of vapor cavities inside an initially 
homogeneous liquid medium, occurs if the pressure is lowered below 
vapor pressure. The liquid medium is then “broken” at one or several 
points and “cavities” appear, their shape strongly dependent on the 
structure of the flow. The vapor structures are unstable, and when they 
reach a region of increased pressure, they often collapse violently [1]. 
The research on the potential of cavitation exploitation is currently an 
extremely interesting topic. Availability of water is becoming an 
increasing concern in the globalized world, in both developed and 
developing countries. Therefore, an efficient and clean disinfection 
technology, such as optimized employment of cavitation, would be 
readily welcome to substitute or be combined with the existing ones [2]. 

Different types of cavitation reactors are being promoted by re-
searchers, nowadays. We can generally divide them into i) 
pump&constriction [3,4], ii) blow through [5,6] and iii) rotor–stator 
type of setups [7–9]. Most of the advanced lab-scale reactors are the 
pump&constriction type, where the contaminated water (containing 
bacteria, virus, algae, etc.) is pushed through the orifice or a Venturi 
type constriction by the pump, where the sample cavitates. The blow- 
through setups are essentially the same, but the sample is pushed by 
compressed air, hence these setups have more controlled conditions, 
suitable for scientific exploratory studies, but cannot be efficiently used 

in industrial applications. Finally, the most complex are the rotor–stator 
devices, which are many times already used in pilot setups. 

One of the advantages of hydrodynamic cavitation is its scalability 
and its potential to be used on an industrial scale. Nonetheless, one must 
be aware that scaling effects and optimization are not straightforward 
and inexpensive [10]. Hence, to reduce the costs and time of the opti-
mization process, nowadays, experimental optimization is supple-
mented and even replaced using computational fluid dynamics (CFD). 

The simulation of the physics of cavitating dynamics, which involve 
simultaneously large density and compressibility variations, turbulence 
effects, and instabilities at various scales, is still beyond the current state 
of the art. But in the last 20 years engineers (mostly from the field of 
turbomachinery) developed reliable methodologies, based on CFD, to 
predict the essential cavitating flow features [11]. 

Mastering CFD is a combination of knowledge of fluid mechanics and 
experience. Especially the latter is a tipping point in the outcome of the 
study. While understanding the flow inside the flow tract can be rela-
tively easy to master in a reasonable amount of time, the craft of CFD is 
only learned by a long, hands-on, process. Yet, many researchers, 
coming from other fields, treat this “new” tool too simplistic, which can 
lead to many misinterpretations and consequent poor engineering. 

Looking at some recent examples of utilizing CFD [12–20] to inter-
pret the results and facilitate the optimization process reveals that on 
one side researchers approach the modeling of very complex geometries 
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(rotor–stator interaction, narrow gaps, high-frequency oscillations, 
swirls), but on the other employ a very rudimentary modeling approach 
(steady flow approach, very basic turbulence modeling, and even 
assuming laminar flow conditions and no cavitation modeling). 
Furthermore, rarely studies of mesh independence and convergence 
criteria are included in the manuscript, and all too often the boundary 
conditions are not detailed enough. Since the cavitating flow is an 
extremely dynamic process, such simulations are incapable of capturing 
many of its features (for example cloud shedding), which can, later on, 
be a subject of optimization of the process [2]. 

In the following sections, we describe the numerical simulation of 
flow in a very confined geometry – a usually encountered case in cavi-
tation reactors (pump&constriction type). As an example, we have 
intentionally chosen a very simple reactor, a parallel wall Venturi type 
microchannel, which is many times used as a starting point in studies of 
bacteria eradication and virus inactivation by cavitation. On one hand, 
this very simple and small geometry features predominantly 2D flow. 
This is a consequence of the laminar flow at the inlet, generally confined 
geometry, and also the sharp transition from convergent to divergent 
part of the geometry, which suppresses the effects of secondary flow 
structures, such as the corner vortices. On the other hand, extremely 
complex flow conditions appear, and their prediction is essential for 
further optimization and scale-up. 

The aim of the paper is not to directly make advancement in the state 
of the art in simulations of cavitation, but to i) show the complexity of 
the flow features that appears even in simple geometry and ii) to explain 
how the simulation should be performed to capture them. A further goal 
is to give the researcher, with a background from fields other than 
(mechanical) engineering, a frame on how to approach simulation of 
cavitation reactors, how to avoid misinterpretation of the obtained re-
sults, and how to report them. 

2. Venturi reactor and typical flow features 

The experimental procedure is only briefly shown here, a much more 
thorough report can be found in [21]. 

The experimental set-up is shown in Fig. 1, using planar geometry of 
the Venturi microchannel, as can be seen from the test section side view 
in said figure. Microchannels are made of 450 µm thick stainless-steel 
sheets that include a laser-cut convergent-divergent constriction by 
sandwiching them between two acrylic glass plates. The convergent 
angle of the Venturi channel measures 18◦ and the divergent angle 10◦, 
with the height of the throat being 675 µm. Both entry and exit into and 
out of the channel are perpendicular to the cross-section plane, with a 
channel inlet on the left and an outlet on the right side of the channel. 

Images of cavitation were captured by high-speed cameras (Photron 
SA-Z and Photron Mini AX200) at a framerate of typically 200,000 fps in 
both visible and X-ray light spectrum. Fig. 2 provides a brief overview of 
the important flow features, which were observed in the microchannel. 
These are more thoroughly elaborated in a previous paper by Podbevšek 
et al. [21]. 

The first appearance of cavitation resembles the condition of 
supercavitation – a stable large single cavitation bubble, which covers a 
large portion of the Venturi section. In larger channels, the attached 
cavity is always composed of numerous cavitation bubbles, while in the 
smaller channels, the vapor structure consists of a finite number of large 
(compared to the section size) individual bubbles. What we observe in 
the present microchannel flow is a large single cavitation bubble 
stretches from the inception point downstream until the pressure in-
creases well above the saturation pressure. Also, a more detailed 
observation reveals that its size oscillates periodically and that vaporous 
structures are shed from its closure. 

The interface between the bubble and the liquid jet above becomes 
“wavy” from time to time, which was identified because of the Kelvin- 
Helmholtz instability [21]. As the bubble seizes to grow, a shear flow 

Fig. 1. Experimental setup (top) and the Geometry of the Venturi microchannel (bottom).  

Fig. 2. General observations of the phenomena, which are unique for developed cavitation in microchannels [21].  
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between the bubble interface and the liquid jet above forms. The 
discontinuity in the velocity induces vorticity at the interface, which 
becomes unstable, grows, and eventually rolls up into a spiral and causes 
the separation of numerous small cavitation clouds. 

Usually, the frequency of cavitation cloud shedding is associated 
with the Strouhal number, which for developed cavitating flow typically 
lies in the range between 0.1 and 0.5 [22]: 

Str =
fl
v
= 0.1⋯0.5, (1)  

where f is the cloud shedding frequency, l is the size of the cavity and v is 
the reference velocity. In the present case, in a tightly confined geom-
etry, the reversed flow, which normally triggers shedding, cannot fully 
develop. The cavity, therefore, becomes stable, but on the other hand, 
the onset of Kelvin-Helmholtz instability still causes cloud separation. 

Finally, very seldom a shock wave could be sensed, which is not the 
case in “normal” size developed cavitating flow, where shocks occur 
frequently [1]. The reason likely again lies in the very confined geom-
etry, which slows down the collapse of cavities and absorbs the waves. 

Even the simplest geometry features a rich ensemble of complex flow 
features, the most interesting being the Kelvin-Helmholtz instability, 
which was not reported in the cavitating flow before our study [21]. In 
the following sections, we describe the setup and results of the simula-
tion, and critically evaluate its capability to reproduce the experimental 
observation and to give a better look into the physics of flow in the 
reactor. 

3. Numerical procedure 

CFD software packages offer a wide range of computational models 
and settings that, along with the increasing computing power of an 
average computer, enable reliable numerical modeling of engineering 
problems, including the phenomenon of cavitation. The flow field is 
described by Navier-Stokes equations, which are a series of partial dif-
ferential equations that describe how momentum and mass are 
conserved in a viscous fluid flow. Depending on how we solve these 
equations and what models we use, we know three main approaches 
(DNS, LES, and RANS). A direct numerical simulation (DNS), in which 
Navier-Stokes equations are solved accurately, where the whole range of 
spatial and temporal scales of the turbulence are resolved. Nonsta-
tionary Navier-Stokes equations are solved on an extremely fine 
computational mesh with correspondingly small time steps to capture 
even the shortest oscillation periods. Such calculations are thus 
extremely computationally demanding, requiring a lot of computational 
resources, which is why this type of method is barely used. The second 
approach, among them Large-Eddy Simulation (LES) and Detached- 
Eddy Simulation (DES), have been made possible by increased avail-
able computational resources. These relatively new methods are being 
used in research to accurately resolve larger vortices. The methods 
involve the spatial filtering of nonstationary Navier-Stokes equations 
before calculations, which allows larger vortices to pass and rejects 
smaller ones. The effects on the calculated current (mean current with 
larger vortices) due to smaller vortices are modeled with a sub-grid scale 
model. Due to the partial solution of non-stationary equations, there is 
also a much greater need for computing power. Usually, due to the lack 
of sufficient computational resources, the third approach, Reynolds- 
averaged Navier-Stokes (RANS) equations are most used in engineer-
ing practice, where we use averaging of arbitrary variables and are thus 
a simplified form of fluid flow differential equations. In this method, 
attention is focused on the mean flow and the effects of turbulence on its 
properties, where turbulent fluctuations are not resolved but are 
modeled with a turbulence model instead. The results obtained with this 
kind of approach are accurate enough, given the relatively small 
required computational resources, that such an approach has been 
maintained as the main tool for solving engineering problems for the last 

three decades. 
Finally, approaches where the numerical model switches between 

Eulerian and the Lagrangian mode when the scale is small enough exist 
[23]. These definitively have potential in the future in various applica-
tions, such as cavitation erosion prediction. However, considering the 
purpose of the present paper – to give an inexperienced cavitation 
reactor engineer handy guidelines on how to approach CFD modeling of 
cavitation in their devices, this still lies beyond the scope of this 
manuscript. 

3.1. Mesh 

To facilitate the computation of the case and to speed up the calcu-
lation of the simulation, we considered the problem two-dimensionally. 
Thus, the channel entry and exit were extended accordingly, as shown in 
Fig. 3. The computational mesh was structured. We have tested the mesh 
independence on 3 meshes. For the mid-course mesh, the discretization 
error of 0.6% was determined by Richardson extrapolation [24] against 
the average pressure difference Δp and the length of the cavity l at a flow 
rate of ṁ = 9.03 g/s (Table 1). 

The final mesh had a constant number of 67 cells along with the 
channel height. Thus, the height of an individual cell at the site of the 
throat is 10 µm. The cells increase in proportion to the geometry, with an 
increase in the length to height ratio towards the inlet and outlet of the 
domain. Also, we considered the boundary layer, where we determined 
the total thickness of the boundary layer 50 µm, with 10 layers and a 
growth rate of 1.2, which is a fine enough grid to keep the y + values 
below 5 in all cases. This means that the first cell along the microchannel 
wall is located in the viscous sublayer region of a turbulent boundary 
layer. The computational mesh with which we performed the final nu-
merical simulations counts approx. 160,000 elements (detail in Fig. 3). 

3.2. Reynolds-averaged Navier-Stokes (RANS) equations 

Differential equations, which accurately describe the flow field, 
require a huge amount of computing power, making them not suitable 
for practical use. Thus, in practice, we use averaging of variables, 
namely we define them as the sum of the time-average or mean 
component Ф and a time-varying fluctuating component φ’(t) with zero 
mean value. The written form of the equations is often used in CFD 
packages. In the equations below, the overline above the variable in-
dicates time-averaged, while the tilde indicates a density-weighted 
averaged or Favre-averaged variable [25]. The continuity equation is 

Fig. 3. Microchannel computational domain geometry and detail of the mesh 
in the throat region of the section. 

Table 1 
Mesh independence study.  

Mesh size Δp (bar) l (mm) 

~80,000  3.56  25.0 
~160,000  3.71  25.6 
~320,000  3.73  25.7  
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thus: 

∂ρ
∂t

+∇∙
(

ρU
)
= 0, (2)  

and the momentum equation in the x and y-axis respectively: 

∂
(

ρU
)

∂t
+∇∙

(
ρUU

)
=

= −
∂P
∂x

+∇∙
(
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)
+

⎡

⎣ −
∂
(
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−
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−
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⎦+SMx, (3)  

∂
(

ρV
)

∂t
+∇∙

(
ρVU

)
=

= −
∂P
∂y

+∇∙
(

μ∇V
)
+

⎡

⎣ −
∂(ρu’v’)

∂x
−

∂
(

ρv’2
)

∂y
−

∂(ρv’w’)

∂z

⎤

⎦+SMy. (4) 

Some authors stress that for the accurate capturing of details of 
cavitating flow, performing a compressible flow simulation is essential 
[26–28]. For this one must additionally solve the energy conservation 
equation and introduce equations of state for vapor and liquid. How-
ever, as it was shown in numerous studies in the past (for example 
[29,30]) sufficient accuracy can also be obtained by assuming the 
incompressible flow, which significantly reduces the computational load 
of the simulation, or by using an empirical barotropic state law, where 
compressible effects are taken into account without solving the energy 
equation, where more about the model is described under cavitation 
models. 

3.3. Turbulence modeling 

Turbulence causes the occurrence of eddy flows with a wide range of 
magnitude and time scales of vortices that interact in a dynamic and 
complex manner. Given the importance of turbulence in engineering 
applications, it is understandable that much of the research effort is 
devoted to the development of numerical methods to capture the sig-
nificant effects resulting from turbulence. 

For engineering purposes in most cases, there is no need to accu-
rately solve turbulent fluctuations and we are often only interested in 
time-averaged flow properties, most turbulent flows can still be modeled 
by RANS equations, despite more advanced but computationally 
demanding approaches (for example Large-eddy simulation (LES) and 
detached-eddy simulation (DES)) exist. 

The result of RANS equations is that we obtain an additional term, 
the so-called Reynolds stress tensor (RST). The most used RANS turbu-
lent models are divided according to the number of additional transport 
equations that must be solved together with the RANS flow equations to 
complete the entire system of equations. Turbulent models are used to 
express Reynolds stresses by an approximation proposed by Boussinesq 
in 1877 and based on the assumption that there is an analogy between 
viscous and Reynolds stresses [31]. Solving the system of equations is 
thus reduced to determining the turbulent viscosity, which is propor-
tional to the length and time scale of turbulence: 

μt∝ρ l2
t

tt
. (5) 

With the so-called two-equation turbulent models (k-ε and k-ω), 
which are also the most used and has become the workhorse of practical 
engineering flow calculations, we can calculate both, a turbulent length 
and time scale by solving two additional transport or differential 
equations alongside algebraic equations to describe Reynolds stresses. 

The standard k-ε turbulent model [32], is a semi-empirical model 
based on model transport equations for the turbulence kinetic energy k 

and its dissipation rate ε. The assumption for the standard k-ε model is 
fully turbulent flow, and the effects of molecular viscosity are negligible. 
Transport equations for turbulent kinetic energy and its dissipation rate 
are as follows: 

∂
∂t
(ρk)+∇∙(ρkU) = ∇∙

(
μt

σk
∇k

)

+ 2μtSij∙Sij − ρε (6)  

∂
∂t
(ρε)+∇∙(ρεU) = ∇∙

(
μt

σε
∇ε

)

+C1ε
ε
k

2μtSij∙Sij − C2ερ ε2

k
(7) 

In the above equations, the first term represents the rate of change of 
k or ε, the second term transport by convection, the third transport by 
diffusion, and the last two terms represent the rate of production and 
dissipation of k or ε, respectively. Turbulent viscosity in the k-ε model is 
defined as: 

μt = ρCμ
k2

ε . (8) 

The model includes five constants, which are determined based on 
extensive data fitting and correspond to a wide range of turbulent flows 
[25]. With known strengths and weaknesses of the standard k-ε model, 
modifications (RNG k-ε [33] and Realizable k-ε [34]) have been estab-
lished to improve its performance. 

The standard k-ω turbulent model [35] is an empirical model based 
on model transport equations for the turbulence kinetic energy k and the 
specific dissipation rate or turbulence frequency ω. The standard k-ω 
model contains modifications for low-Reynolds number effects, due to 
which it is valid in the viscous sub-layer of the boundary layer, 
compressibility, and shear flow spreading but is sensitive to the values of 
k and ω outside the shear layer. Turbulent viscosity in the k-ω model is 
defined as: 

μt = ρ k
ω. (9) 

Transport equations for turbulent kinetic energy and specific dissi-
pation rate for turbulent flows at high-Reynolds numbers are: 

∂
∂t
(ρk)+∇∙(ρkU) = ∇∙

[(

μ +
μt

σk

)

∇k
]

+ Pk − β*ρkω, (10)  

where 

Pk =

(

2μtSij∙Sij −
2
3

ρk
∂Ui

∂xj
δij

)

(11)  

and 

∂
∂t
(ρω)+∇∙(ρωU) = ∇∙

[(

μ +
μt

σω

)

∇ω
]

+ Pω − β1ρω2, (12)  

where 

Pω = γ1

(

2ρSij∙Sij −
2
3

ρω ∂Ui

∂xj
δij

)

(13) 

In equations (10) and (13), the first term represents the rate of 
change of k or ω, the second term transport by convection, the third 
transport by diffusion, and the last two terms represent the rate of 
production and dissipation of k or ω, respectively. This model too in-
cludes five constants, determined empirically [25]. 

The standard k-ω turbulent model has its weaknesses, that is why 
other models, similar to the standard k-ω model have been established 
over time. Two of these are the Baseline (BSL) and the Shear-Stress 
Transport (SST) k-ω turbulent models, developed by Menter [36]. The 
BSL k-ω turbulent model effectively blends the robust and accurate 
formulation of the k-ω model in the near-wall region with the freestream 
independence of the k-ε model in the far-field. To achieve this the 
standard k-ω model and the transformed k-ε model are both multiplied 
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by a blending function and both models are added together. The 
blending function is one in the near-wall region, which activates the 
standard k-ω model and zero away from the surface, which activates the 
transformed k-ε model. In addition to this, the SST k-ω turbulent model 
accounts for the transport effects of the principal turbulent shear stress 
in the modified formulation of the turbulent viscosity. This makes the 
SST k-ω turbulent model more accurate and reliable for a wider range of 
flows (e.g. adverse pressure gradient flows), y + insensitive, and overall, 
one of the best two-equation eddy-viscosity turbulent model used today. 

However, as it turned out, two-equation turbulent models in the 
basic form do not give correct results in the case of nonstationary 
cavitation e.g., cavitation with periodic cavitation cloud shedding. 
Namely, the model appears to predict excessive turbulent viscosity, 
determined by equations (8) and (9), which prevent the reentrant jet 
from appearing at the rear of the cavitation cloud, causing it to shed. To 
improve the turbulent model for more realistic nonstationary cavitation 
modeling, Reboud et al. [37] proposed a modified turbulent model, 
where they artificially reduced the turbulent viscosity of the mixture in 
areas with higher vapor fractions or lower mixture densities. The 
equations of turbulent viscosity (8) and (9) are thus changed to equa-
tions (14) and (15) respectively, while the density function is defined by 
equation (16), where indices l, v, m represents liquid, vapor, and 
mixture: 

μt = f (ρ)Cμ
k2

ε (14)  

μt = f (ρ) k
ω (15)  

f (ρ) = ρv +
(ρm − ρv)

n

(ρl − ρv)
n− 1 n≫1 (16) 

Various values were investigated for the exponent n, among which 
the use of a value of 10 was proposed by Coutier-Delgosha et al. [38]. 
The described modification of the turbulent model was used and vali-
dated by several researchers, both in the Venturi and with the hydrofoil 
[30,39–42]. Recently the use of the turbulence model modification was 
also experimentally evaluated and finally justified [43,44]. 

3.4. Two-phase flow modeling 

For cavitation modeling, we most commonly use the principle of the 
homogeneous flow of the mixture, where the two-phase flow is 
considered as a single-phase flow of the liquid–vapor mixture. This al-
lows us to solve only one equation of motion, as we treat the problem as 
single-phase, but with variable properties of the mixture. The properties 
of a mixture of liquid and vapor are thus defined by the proportion of the 
vapor phase, using the model proposed by Bankoff [45]. The density of 
the mixture is written: 

ρm = αρv +(1 − α)ρl, (17)  

and dynamic viscosity as 

μm = αμv +(1 − α)μl. (18) 

However, we must be careful with the latter equation, namely, the 
written equation is an approximation and does not necessarily apply to 
every case of two-phase flow. In the model of the homogeneous flow of 
the mixture, the equations of conservation of mass and momentum are 
solved by the properties of the mixture, and the equation of conservation 
of the phase fraction must be solved: 

∂
∂t
(ρvα)+∇∙(ρvαuv) = Re − Rc (19)  

where α represents vapor volume fraction, and Re and Rc mass transfer 
source terms, which account for the mass transfer between the liquid 

and vapor phases in cavitation and are thus connected to the growth and 
collapse of the vapor bubbles. Their formulation differs according to the 
cavitation model used. 

3.5. Cavitation models 

We know several cavitation models with which we can model the 
evaporation and condensation of liquid and vapor in the homogeneous 
flow of the liquid–vapor mixture. 

The first is a barotropic model that connects the density of the liq-
uid–vapor mixture with the local static pressure. The model assumes 
pure liquid (α = 0) with density ρl when the static pressure in the cell is 
higher than pvap + Δp and pure vapor (α = 1) with density ρv when the 
pressure is lower than pvap – Δp. Both states are associated with a smooth 
continuous transition, which leads us to the barotropic law of state and 
can be written by empirical equation [46]. The barotropic model shows 
good results, but due to the greater sensitivity of numerical algorithms, 
the simulations are often unstable with hard-to-achieve convergence. 
Thus, the application of the model requires a lot of experience to 
properly adjust the density function as a function of local static pressure 
[47]. The barotropic model was proposed by Delannoy and Kueny [48] 
and has been used by other researchers in the past [37–39,49]. 

The second type of cavitation model is the mass or volume fraction 
transfer model, which is based on the transport equation (19), through 
which we calculate the volume or mass fraction transfer of the liquid or 
vapor phase. In the model, we operate with two terms that indicate the 
source and sink of the vapor phase or describe the process of evaporation 
and condensation. The terms define the local flow conditions, namely 
the static pressure and velocity and the properties of the fluid i.e., liquid 
and vapor density, evaporating pressure, and surface tension. Source 
terms are derived from the Rayleigh-Plesset equation [50,51], with the 
higher-order and viscosity terms being neglected. The most used model 
of mass or volume fraction transfer, which is also used in commercial 
software packages for CFD, is the so-called full cavitation model, pre-
sented by Singhal et al. [52], which, however, can often be unstable and 
lead to divergence of the simulation. 

In recent years, the most used cavitation models in CFD are bubble 
dynamics models, first described by Kubota et al. [53], where he used a 
linear part of the Rayleigh-Plesset equation to describe the development 
of bubble radius as a function of ambient pressure. Bubble radius and 
bubble number density, however, determine the proportion of the vapor 
phase and thus the density of the mixture. Based on the Rayleigh-Plesset 
equation, other cavitation models were derived based on the pressure 
and bubble radius dependencies [54]. In all cases, however, it is 
necessary to know certain variables, such as the bubble number density 
or bubble initial size, which are very difficult to determine. Cavitation 
models based on bubble dynamics that are commonly used in com-
mercial software packages for CFD are the Schnerr-Sauer [55] and 
Zwart-Gerber-Belamri models [56], where we will describe the former in 
more detail below. 

Mass transfer source terms are modeled based on the Rayleigh- 
Plesset [50,51] equation describing the growth of a single vapor bub-
ble in a liquid: 

Rb
d2Rb

dt2 +
3
2

(
dRb

dt

)2

=

(
pb − p

ρl

)

−
4νl

Rb
Ṙb −

2σ
ρlRb

, (20)  

where Rb denotes bubble radius pb bubble surface pressure, νl liquid 
kinematic viscosity, and σ liquid surface tension coefficient. In some 
cases, higher-order terms are important [57], but commonly these, 
along with the effects of surface tension and viscosity, can be neglected. 
The above equation can be simplified to: 

dRb

dt
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2
3

pb − p
ρl

√

. (21) 
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The above equation provides a physical approach to introduce the 
effects of bubble dynamics into the cavitation model. As for the Schnerr- 
Sauer cavitation model, the Re and Rc mass transfer source terms are 
defined as:when pv ≥ p 

Re = Fevap
ρvρl

ρ α(1 − α) 3
Rb

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2
3
(pv − p)

ρl

√

, (22)  

when pv ≤ p 

Rc = Fcond
ρvρl

ρ α(1 − α) 3
Rb

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2
3
(p − pv)

ρl

√

, (23)  

where Fevap and Fcond are the empirical calibration coefficients of evap-
oration and condensation with the default values of the solver used 1 
and 0.2, respectively. 

To connect the vapor volume fraction to the number of bubbles per 
volume of liquid nb Schnerr-Sauer cavitation model uses: 

α =
nb

4
3 πR3

b

1 + nb
4
3 πR3

b
, (24)  

where bubble number density nb is the only parameter that must be 
determined in this model. 

3.6. Boundary conditions 

Based on the measurements, cavitation in the microchannel was 
modeled at different mass flows. At the inlet to the computational 
domain, we prescribed the corresponding velocities calculated from the 
mass flows according to the equation below, while at the outlet we 
prescribed an absolute pressure of 1 bar in all cases: 

v =
ṁ
ρA

. (25) 

The turbulence intensity at the inlet was set to 0% since there is a 
laminar flow for all cases, and at the outlet, the initial backflow turbu-
lent intensity was set to 5%. Also, we defined that only water enters or 
exits at the inlet and outlet of the computational domain (i.e., the vapor 
volume fraction is equal to zero). Boundary conditions for walls were set 
as stationary walls with a no-slip shear condition and a standard wall 
roughness model. The modeling did not consider the compressibility of 
water and water vapor, the parameters of which were taken at a tem-
perature of 20 ◦C. 

3.7. Physics and solver settings 

Setting proper simulation settings is essential, as are the initial 
conditions from which to start the simulation, so we first calculated 
simulations for each mass flow under stationary conditions as single- 
phase steady-state simulations. Results of which were then taken as 
the initial conditions for further transient simulations. Numerical sim-
ulations were performed using time-dependent Reynolds-averaged 
Navier-Stokes equations. A homogeneous mixture of water and water 
vapor was considered and a Schnerr-Sauer cavitation model [55] with 
an evaporation pressure of 2340 Pa and the bubble number density of 
1011 were used. For the turbulent model, a modified SST k-ω model was 
used, using the turbulent viscosity correction proposed by Reboud et al. 
[37] and Coutier-Delgosha et al. [38], described above. The PISO al-
gorithm [58] was used to couple the pressure and velocity. Spatial nu-
merical discretization of solving hyperbolic partial differential 
equations for everything except pressure and volume fraction, we used 
the Second-order upwind scheme [59], which gives more accurate re-
sults with slightly higher consumption of computer resources compared 
to the First-order upwind scheme. The PRESTO! interpolation scheme 
was used to discretize the pressure [31], and for the discretization of the 

volume fraction First-order upwind scheme [59] was used. For transient 
solutions, time integration was calculated using the Bounded second- 
order implicit transient formulation. 

The convergence criterion was determined by observing the evolu-
tion of different flow parameters (absolute pressure at the inlet and 
outlet, and velocities at the inlet, outlet, and throat of the microchannel) 
in the computational domain. The monitored flow parameters were al-
ways converged after the sum of the imbalance of the transport equa-
tions between iterations over all cells in the computational domain fell 
below 10-5 of the iterative numerical solution of the individual equations 
in each time step of the simulation. The iteration error of less than 0.02% 
was estimated. The size of the time step was determined by evaluating 
its influence against the average pressure difference and the cavity 
length. No difference in these parameters was found if the time step was 
shorter than 5 µs, but for the sake of observation of Kelvin-Helmholtz 
instability a shorter one – 1 µs was eventually used. 

For each case, we performed 50 ms of numerical modeling, where the 
last 30 ms were applicable for further analysis. 

4. Results 

First, the accuracy of simulation in terms of pressure losses is eval-
uated (Fig. 4) since this is one of the simplest parameters to measure. As 
the cavitation pocket grows and collapses, the pressure losses in the 
section oscillate. The values in the diagram (Fig. 4) are an average 
calculated from 30 ms of flow time (several periods of oscillation). 

As shown, the trends fit very well. One can notice a slight underes-
timation of the pressure losses at small flow rates, which is probably a 
result of modification of the turbulence model by the artificial decrease 
of turbulent viscosity parameter (Eq. (15)). It is known that this modi-
fication triggers highly unsteady cavitation dynamics prediction even in 
the cases where it is predominately attached and steady. Nonetheless, 
based on the comparison of the two curves, one can claim that the 
simulation predicts the pressure loss in the section adequately. 

Cavitation cloud shedding was already mentioned previously. It is 
one of the most representative phenomena associated with the devel-
oped cavitating flow. Simulations are commonly evaluated against their 
capability of accurately capturing these dynamics. Fig. 5 shows the 
comparison of the observed and the predicted cavitation cloud shedding 
process. 

Both sequences show one cavitation cloud shedding cycle. They 
begin at the moment when the attached cavity begins to grow (image 1). 
At the same time, the previously separated cloud is advected down-
stream by the flow and collapses (seen in experimental images 5–7). As 
the attached cavity grows a liquid flow underneath the cavity causes its 
separation (clearly seen in both experimental and simulation images 
8–10). The observed and predicted sizes of the attached cavity and the 

Fig. 4. Measured and predicted pressure losses as a function of mass flow rate.  

P. Pipp et al.                                                                                                                                                                                                                                     



Ultrasonics Sonochemistry 77 (2021) 105663

7

separated clouds agree well as do times of the distinctive events (growth, 
separation, collapse) during the process. Simulation on the other hand 
also predicts the rebound of the collapsed cavitation cloud, which is not 
seen during the experiment. 

As of the topology of cavitation, in experimental images, one can see 
that, due to the small thickness of the test section, the clouds are almost 
completely filled by vapor (the transition from water (bright) over the 
interface (dark) to vapor (bright) is very sharp). This is correctly pre-
dicted by the simulation, which shows the very sharp interface and es-
timates the void fraction α inside the cloud close to 1. 

Fig. 6 shows the average cavitation length as a function of the 
cavitation number. The latter is calculated by [60] as: 

σ =
pin − pv

Δp
, (31)  

where pin is the inlet (upstream) absolute pressure, pv is the vapor 
pressure and Δp is the pressure difference between the inlet and outlet 
from the test section. 

Again, a good correlation between the experimental and predicted 
values can be seen. Interestingly the cavity length first increases linearly 
as the cavitation number is lowered. At σ = 1.13 it reaches a bit over 
30 mm. This is the position of the curvature of the upper channel wall 
(see Fig. 5). The change in the pressure gradient causes the change in the 
size of the cavitation increase, which now begins to grow faster as the 
cavitation number is decreased. At a cavity length of approximately 
40 mm the cavity ceases to grow as choked flow conditions are 
established. 

Another important parameter for evaluation of the simulation 
capability is the cavitation cloud shedding frequency and the 

corresponding Strouhal number (Figs. 7 and 8). In the experiment, the 
frequency is evaluated by FFT analysis of the gray level of images inside 
a region of interest that is positioned at the cavity closure line. In sim-
ulations, we do the same for the void fraction. For both cases, the FFT 
analysis was double-checked by simply counting the void structures. 

Looking also at the previous figure (Fig. 6) as the cavitation number 
decreases, the cavity grows. The flow over it needs a longer time for the 
passage. It is expected that due to this, the shedding frequency will lower 
for the larger cavity (smaller cavitation numbers). Interestingly it re-
mains almost constant at approximately 100 Hz below σ = 1.2. This is 

Fig. 5. Cavitation cloud shedding (Experiment: ṁ = 9.15 g/s, Δp = 4.00 bar, σ = 1.24, Simulation: ṁ = 9.03 g/s, Δp = 3.71 bar, σ = 1.26). The time difference 
between the images is Δt = 0.5 ms. 

Fig. 6. The length of the attached cavity as a function of the cavitation number.  Fig. 7. Cavitation cloud shedding frequency as a function of the cavita-
tion number. 

Fig. 8. Strouhal number as a function of the cavitation number.  

P. Pipp et al.                                                                                                                                                                                                                                     



Ultrasonics Sonochemistry 77 (2021) 105663

8

again the effect of a different pressure gradient in the region far away 
from the throat of the Venturi (>30 mm). In smaller cavity sizes the 
frequency increases linearly to approximately 500 Hz for the smallest 
cavity in the present study. 

As already mentioned (Eq. (1)) the Strouhal number typically lies in 
the range between 0.1 and 0.5 [22]. For the present study, it was 
calculated based on the shedding frequency, the length of the attached 
cavity, and the velocity at the throat of the Venturi section. 

Strouhal number analysis shows the same story as the frequency 
(Fig. 7). Reassuring is the fact that both experiment and the simulation 
set their value in the expected range. 

We have mentioned in the brief description of the experiment, that 
onset of the Kelvin-Helmholtz instability was observed. To see whether 
this phenomenon can be captured by simulation, a more detailed look 
into the process of cloud separation is shown in Fig. 9. The time dif-
ference is 40 μs (an order of magnitude shorter than the one in Fig. 5). 

Both the experiment and the simulation show the same story, 
although the Kelvin-Helmholtz instability is somewhat more pro-
nounced in the case of simulation. The attached cavity grows (1) and 
reaches its maximal size (2). Shortly later (3) shear flow between the 
liquid jet and the cavity interface forms. Small changes in the gap be-
tween the interface and upper channel wall cause the local changes in 
the pressure difference on each side of the interface (4), consequently, 
the gap is locally narrowed or increased further – the waviness increases 
(5). The shear flow initiates vorticity along with the wavy interface and 
clear Kelvin-Helmholtz instability forms (6 and 7). Later, the instability 
engulfs the whole cavitation cloud (8, 9, 10) and causes its dissolvement 
in the flow (not shown in this sequence). A more detailed analysis with a 
better insight into the Kelvin-Helmholtz instability and its influence on 
the cavitation dynamics and cavitation cloud shedding in Venturi 
microchannels is presented and explained in [21,61]. 

5. Conclusions 

The work presented here was not intended to progress the state of the 
art in simulations of cavitating flow but to i) serve as an example of how 
even in a simple geometry very complex fluid dynamics phenomena can 
occur, ii) how complex an appropriate approach to simulation must be 
to capture these phenomena and finally iii) how to present and evaluate 
the simulation results so that they can be further considered a reliable 
base for optimization of cavitation driven processes. 

The present paper serves as an example of how complex the flow 
features, even in the very simplest geometry, can be, and how much 
effort needs to be put into details of numerical simulation to set a good 
starting point for further optimization of cavitation reactors. 

Before we conclude we would like to give the following suggestions 
for future reports, which will (we hope) make the research in the field 
more transparent and repeatable and will consequently enable faster 

progress of the science and technology:  

1. Effort should be put into an accurate description of the cavitating 
geometry.  

2. If possible, experimental verification should be performed.  
3. Computational domain should be meshed with grids of different sizes 

and a mesh independence test should be performed. 
4. Cavitation is a highly unsteady phenomenon and most of its “inter-

esting” features are related to its unsteady nature. Hence it is 
essential to perform unsteady simulations.  

5. Advanced turbulence models or at least appropriate modifications 
[37,38] to the existing ones should be used.  

6. Governing equations and simulation setup should be clearly 
described.  

7. Results should present both the general behavior of cavitation and 
integral variables, such as size, shedding frequency, etc. 

Hopefully, this work will provide an appropriate foundation for the 
cavitation reactor engineers, who are not experts in computational fluid 
dynamics, to set up reliable cavitation simulations that can be further 
used for reactor optimization. 
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[21] D. Podbevšek, M. Petkovšek, C.D. Ohl, M. Dular, Kelvin-Helmholtz instability 
governs the cavitation cloud shedding in microchannels, Int. J. Multiph Flow 
(2021). 

[22] M. Dular, R. Bachert, The issue of strouhal number definition in cavitating flow, 
Stroj. Vestnik/Journal Mech. Eng. 55 (11) (2009) 666–674. 

[23] A. Peters, Numerical Modelling and Prediction of Cavitation Erosion Using Euler- 
Euler and Multi-Scale Euler-Lagrange Methods, Institute of Ship Technology, 2020. 
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