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Abstract: Recently the development of Kelvin-Helmholtz instability in cavitating flow in Venturi
microchannels was discovered. Its importance is not negligible, as it destabilizes the shear layer
and promotes instabilities and turbulent eddies formation in the vapor region, having low density
and momentum. In the present paper, we give a very brief summary of the experimental findings
and in the following, we use a computational fluid dynamics (CFD) study to peek deeper into the
onset of the Kelvin-Helmholtz instability and its effect on the dynamics of the cavitation cloud
shedding. Finally, it is shown that Kelvin-Helmholtz instability is beside the re-entrant jet and the
condensation shock wave the third mechanism of cavitation cloud shedding in Venturi microchannels.
The shedding process is quasi-periodic.
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1. Introduction

When the pressure drops below the vapor pressure, cavitation, that is, the formation
of vapor cavities within a homogeneous liquid medium occurs. The vapor structures are
precarious, and they frequently collapse vigorously as they encounter an area of elevated
pressure [1]. The mechanism of cavitation cloud shedding is among the most distinctive
features of evolved cavitation. Two unique mechanisms are well established to influence
the process of cloud shedding [2–7].

• Re-entrant jet: the flow that passes over the attached cavity, deviates towards the
surface because of the discrepancies in the pressure in and out of the attached cavity.
Just downstream from the attached cavity closure line, a stagnation point forms and
divides the flow into a downstream and an upstream portion. The latter enters the
attached cavity and causes its separation—creating a detached cavitation cloud that is
carried downstream, where it reaches and collapses into a higher-pressure zone. The
cycle continues periodically.

• Shock wave: a shock wave that travels through the flow region causes the collapse
of the cavitation cloud. It suppresses the attached cavity as it moves upstream. A
large vapor cloud is shed when the distortion in the void fraction enters the area of
cavity separation at the top of the wedge. The cavity expands again later on, and the
cycle continues.

We recently published on the visualization experiment of cavitation within a mi-
crochannel [8]. Although the initial objective of the analysis was to create supercavitating
conditions within it, we discovered that due to the development of a Kelvin-Helmholtz
instability, which induces a semi periodic collapse of the attached cavity, this regime is
suppressed. Detailed experimental studies using high-speed photography with visible
light and X-rays, showed that this is indeed a third process contributing to the shedding of
cloud cavitation in addition to the re-entrant jet and the shock wave mechanisms.
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The purpose of this paper is to provide greater insight into the occurrence of Kelvin-
Helmholtz instability of cavitation structures in the Venturi microchannel. Above all, we
will show how and why the phenomenon occurs, and how it affects the dynamics of cavita-
tion. In doing so, we will focus primarily on showing the results of vapor volume fractions,
velocity profiles, and velocity field, thus showing an insight into what is happening not
only around and at the boundary, but also within cavitation structures.

We give a very brief summary of the experimental findings in the following sections
and then use a computational fluid dynamics (CFD) study to peek deeper into the on-
set of the Kelvin-Helmholtz instability and its effect on the dynamics of the cavitation
cloud shedding.

2. Experimental Observations

The experimental method is seen here only briefly, a more detailed study can be
found in [8]. The set-up is illustrated in Figure 1. By sandwiching them between two
acrylic glass plates, microchannels are constructed of 450 µm thick stainless-steel sheets
that have a laser-cut convergent-divergent narrowing. The Venturi channel’s convergent
angle measures 18◦ and the divergent angle is 10◦, with a throat height of 675 µm. Both the
channel entrance and exit are perpendicular to the cross-section plane, with the channel
inlet on the left and the outlet on the right side of the channel.

Figure 1. Microchannel geometry with the 675 µm throat gap and the 450 µm channel width.

High-speed cameras (Photron SA-Z and Photron Mini AX200, Photron, Tokio, Japan)
have captured cavitation images at a framerate of typically 200,000 fps in both the visible
and X-ray light spectrum. Typical flow features that imply the formation of the Kelvin-
Helmholtz instability in the channel are shown in Figure 2. The flow is from the left side to
the right.

Figure 2. Development of the Kelvin-Helmholtz instability in the microchannel (
·

m = 9.15 g/s,
∆p = 4.00 bar, σ = 1.24).

Figure 2 illustrates common microchannel representations of the Kelvin-Helmholtz
instability. In particular, these images are from an experiment with a mass flow (

·
m) 9.15 g/s,
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a pressure difference between inlet and outlet (∆p) 4 bar, and a cavitation number (σ) of
1.24. A closer look at the flow conditions shows that the attached cavity first forms in the
shape of a large single cavitation bubble extending downstream from the starting point
until the pressure rises well above the saturation pressure—the presence of cavitation is like
the supercavitation state. Kelvin-Helmholtz instability forms when the bubble approaches
its maximum size. The ripple of the interface increases and the instability encircles the
entire cavitation cloud while rolling up and induces its very rapid dissolution in the flow.
The pattern then continues periodically.

The numerical simulation that provides further information in the creation of the
Kelvin-Helmholtz instability and the cavitation dynamics in the microchannel is presented
in the next section.

3. Numerical Procedure

A relatively straightforward simulation was carried out using the commercial Fluent
2020 R2 software package (Ansys Inc, Canonsburg, PA, USA). The solution was obtained
with the Unsteady Reynolds-averaged Navier-Stokes (URANS) equations, with Reboud
correction modified SST k-ω turbulence model and the Schnerr-Sauer cavitation model.
The next section provides some more information.

3.1. Mesh

We regarded the matter two-dimensionally to promote the computation of the case
and to expedite the simulation calculation. Thus, as seen in Figure 3, the channel inlet and
outlet are modified appropriately. The structured computational mesh was used. The mesh
independence was tested on 3 meshes while observing the average pressure difference ∆p
and the average cavity length l. The discretization error of less than 0.6% was calculated by
Richardson extrapolation [9] for the medium mesh with around 160,000 cells at a flow rate
of
·

m = 9.03 g/s (Table 1).

Figure 3. The geometry of the microchannel computational domain and the mesh detail in the wedge
apex area.

Table 1. Mesh independence study.

Mesh Size ∆p (bar) l (mm)

~80,000 3.56 25.0

~160,000 3.71 25.6

~320,000 3.73 25.7

Along with the channel height, the final mesh had a constant number of 67 cells.
Therefore, 10 µm is the height of an individual cell at the wedge apex. In relation to the
geometry, the cells grow in the length to height ratio towards the inlet and the outlet of
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the domain. We have considered the boundary layer, where the overall thickness of the
boundary layer of 50 µm was defined, with 10 layers and a growth rate of 1.2, which is a
sufficiently small mesh to maintain the y+ values below 5.

3.2. Reynolds-Averaged Navier-Stokes (RANS) Equations

The Navier-Stokes equations are a set of partial differential equations, describing the
conservation of momentum and mass for a viscous fluid flow motion. A direct numerical
simulation, in which the Navier-Stokes equations are solved without a turbulence model,
requires a huge amount of computing power because the whole range of spatial and tempo-
ral scales of the turbulence must be resolved. As this is not practical, averaging of variables
is used. The idea behind averaging is the Reynolds decomposition, an instantaneous
quantity decomposition into its time-averaged Φ and fluctuating quantities ϕ’(t) with zero
mean value. Reynolds-averaged Navier-Stokes equations will be used in the form, that
is generally accepted in the commercially available computational fluid dynamics (CFD)
solvers. Here, the overline indicates a time-averaged variable, while the tilde indicates a
density-weighted averaged or Favre-averaged variable [10]. The Favre-averaging method
was selected because in the present case turbulent fluctuations lead to sizeable density
fluctuations. The continuity equation is as follows, where ρ is the fluid density, t time, and
U velocity vector, defined as U = [U, V, W]T:

∂ρ

∂t
+∇·

(
ρ

~
U
)
= 0 (1)

The momentum equations in the x and y directions are as follows, where P is pressure,
µ dynamic viscosity, u′, v′ and w′ velocity fluctuations of velocity vector U, while SMx and
SMy represent momentum source terms in x and y directions, respectively

∂(ρU)
∂t +∇·

(
ρUU

)
= − ∂P

∂x +∇·
(
µ∇U

)
+

[
−

∂
(

ρu′2
)

∂x − ∂(ρu′v′)
∂y − ∂(ρu′w′)

∂z

]
+ SMx

∂(ρV)
∂t +∇·

(
ρVU

)
= − ∂P

∂y +∇·
(
µ∇V

)
+

[
− ∂(ρu′v′)

∂x −
∂
(

ρv′2
)

∂y − ∂(ρv′w′)
∂z

]
+ SMx

(2)

For the accurate representation of cavitating flow details, some authors perform
compressible flow simulations [11–13]. In the compressible case, the energy conservation
equation is added to the above set of continuity and momentum equations. Also, equations
of state of vapor and liquid are introduced. On the other hand, some authors have shown,
that sufficient flow representation accuracy was obtained in the incompressible flow case,
much decreasing the computational load requirements (for example [2,14]).

3.3. Turbulence Modeling

Increased available computational power has made possible advances in computa-
tional fluid dynamics, among them Large-Eddy Simulation (LES) and Detached-Eddy
Simulation (DES). These relatively novel approaches are in research used to accurately
resolve all scales of turbulent fluctuations, while for engineering purposes there is usually
no need for such complexity. In above mentioned Reynolds-averaging models, turbulent
fluctuations are not resolved, and the turbulence model is used instead. The k-ω and k-ε
turbulence models are the most common models used to simulate mean flow characteris-
tics for turbulent flow conditions. Both are two-equation models that provide a general
description of turbulence utilizing two transport equations. The Menter’s Shear Stress
Transport (SST) k-ω turbulent model [15], combines both k-ω and k-ε turbulence models
such that it merges the robust, accurate, and less y+ sensitive performance of the k-ωmodel
in the near-wall region with the solid freestream operation of the k-εmodel in the far-field.
Nowadays the SST k-ω turbulent model is the preferred two-equation turbulent model
and the preferred model for a wide range of applications.
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For the modeling of nonstationary cavitation flows, among them, periodic cavitation
cloud shedding, two-equation turbulent models in the original form are not the preferred
option. Two equation models prevent the reentrant jet from appearing at the rear of the
cavitation cloud, all this being caused by too high prediction of turbulent viscosity. For
a better non-stationary turbulence modeling performance, Reboud et al. [16] proposed
a modification of the turbulent model. In the modification, the turbulent viscosity of
the mixture is reduced in regions with high void fractions and the equation of turbulent
viscosity becomes as follows, with k representing turbulence kinetic energy and ω specific
turbulence dissipation rate:

µt = f (ρ)
k
ω

(3)

The density function is set by Equation (4), here indices l, v, m represent liquid, vapor,
and mixture.

f (ρ) = ρv +
(ρm − ρv)

n

(ρl − ρv)
n−1 n� 1 (4)

Various values were proposed for the exponent n. Coutier-Delgosha et al. [17] pro-
posed value n = 10, while the described turbulent model extension was used and validated
for various applications, among them in Venturi channel and a hydrofoil [2,3,18–20].

3.4. Two-Phase Flow Modeling

We more commonly use the concept of the homogeneous flow of the mixture for
cavitation simulation, where the two-phase flow is assumed to be a single-phase flow
of the liquid-vapor mixture. This helps one to solve only one motion equation since we
consider the problem as a single-phase, but with the mixture’s properties. Accordingly, the
properties of the liquid-vapor mixture are described by the proportion of the vapor phase,
using the model suggested by Bankoff [21]. The mixture’s density is written:

ρm = αρv + (1− α)ρl (5)

where α denotes vapor volume fraction, and mixture’s dynamic viscosity is written as:

µm = αµv + (1− α)µl (6)

The equations of mass and momentum conservation are resolved in the model of the
homogeneous flow of the mixture by the properties of the mixture, and the equation of
phase fraction conservation must be solved:

∂

∂t
(ρvα) +∇·(ρvαuv) = Re − Rc (7)

where Re and Rc represent mass transfer source terms for evaporation and condensation,
which account for the mass transfer between the phases of liquid and vapor in cavitation
and are thus related to the growth and collapse of the vapor bubbles. According to the
cavitation model used, their formulation varies.

3.5. Cavitation Model

We know multiple models of cavitation in which we can model liquid and vapor
evaporation and condensation. Bubble dynamics models, introduced by Kubota et al. [22],
where he used a linear portion of the Rayleigh-Plesset equation to explain the evolution of
bubble radius as a function of surrounding pressure have been the most used cavitation
models in CFD in recent years. The proportion of the vapor phase and hence the density of
the mixture is calculated by bubble radius and bubble number density. Other cavitation
models were derived relying on the pressure and bubble radius dependencies [23], based
on the Rayleigh-Plesset equation. However, with all cavitation models, it is conditioned
to specify parameters, such as the bubble number density or the initial size of the bubble,
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which are very hard to define. The Schnerr-Sauer [24] model is the cavitation model based
on bubble dynamics that is most widely used in commercial CFD software packages, where
the mass transfer source terms Re and Rc (see Equation (7) are defined as:

when local pressure is equal to or smaller than vapor pressure—p ≤ pv:

Re = Fevap
ρvρl

ρ
α(1− α)

3
Rb

√
2
3
(pv − p)

ρl
(8)

when local pressure is larger than vapor pressure—p > pv:

Rc = Fcond
ρvρl

ρ
α(1− α)

3
Rb

√
2
3
(p− pv)

ρl
(9)

where the default values of empirical calibration coefficients of evaporation Fevap and
condensation Fcond are 1 and 0.2, respectively. To link the fraction of the vapor volume to
the number of bubbles per liquid volume nb, the Schnerr-Sauer cavitation model uses:

α =
nb

4
3 πR3

b

1 + nb
4
3 πR3

b
(10)

The parameters that must be determined in this model are bubble radius Rb and bubble
number density n. The compressibility of water and water vapor was not considered in
the modeling.

3.6. Boundary Conditions

Modeling cavitating flow in the microchannel was performed at several mass flow
rates. The boundary condition was set at the inlet of the Venturi channel computational
domain as average velocity. The inlet turbulence intensity was set to zero. The vapor
volume fraction at the inlet was set to zero also.

At the outlet of the Venturi channel computational domain the second boundary
condition was set prescribing the absolute pressure 1 bar and backflow turbulence intensity
5% for all mass flow rates. The vapor volume fraction at the outlet was set to zero.

On all walls, the no-slip stationary wall boundary condition was used with a standard
wall roughness model. The temperature was in all cases set to 20 ◦C.

3.7. Physics and Solver Settings

It is important to set proper simulation settings, as are the initial conditions from
which to start the simulation, so we first performed simulations as single-phase simulations
for each mass flow under stationary conditions. The outcomes were then considered as the
initial conditions for further transient simulations. Numerical calculations were carried out
using time-dependent Reynolds-averaged Navier-Stokes equations. Homogeneous water
and water vapor mixture was considered and a Schnerr-Sauer cavitation model [24] with an
evaporation pressure of 2340 Pa was used. A modified SST k-ωmodel, using the turbulent
viscosity correction suggested by Reboud et al. [16] and Coutier-Delgosha et al. [17],
mentioned above, was used for the turbulent model. For pressure and velocity coupling,
the PISO algorithm [25] was used. We used the second-order upwind scheme [26] for spatial
numerical discretization of solving hyperbolic partial differential equations for all but the
pressure and volume fraction, providing more precise results with marginally higher computer
resource usage compared to the first-order upwind scheme. The PRESTO interpolation scheme
was used to discretize the pressure [27], and the first-order upwind scheme [26] was used
for the discretization of the volume fraction. Time integration was modeled for transient
solutions using the implicit transient formulation of bounded second-order.

The convergence criteria were established by evaluating the progression of various
flow parameters (absolute pressure at the inlet and outlet, and velocities at the microchan-
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nel inlet, outlet, and throat). Following the sum of the imbalance of transport equations
between iterations for all cells in the computational domain, the observed flow parameters
were converged when falling below 10−5 of the iterative numerical solution of the individ-
ual equations at each time step of the simulation. The iteration error was estimated to be
less than 0.02%. By assessing its effect against the average pressure difference and the cavity
length, the size of the time step was obtained. There was little difference in these parame-
ters if the time step was shorter than 5 µs, but a shorter one—1 µs was ultimately chosen
for observation of the Kelvin-Helmholtz instability. We conducted 50 ms of computational
modeling for each case, where the last 30 ms was applicable for further analysis.

4. Results

First, we assess the capability of the numerical simulation to capture the general
cavitation dynamics which was observed inside the microchannel—more specifically the
onset of the Kelvin-Helmholtz instability (Figure 4). The flow is from the left to the right,
the time difference between the images is 100 µs.

Figure 4. Separation of cavitation clouds and Kelvin-Helmholtz instability formation (experiment:
·

m = 9.15 g/s, ∆p = 4.00 bar, σ = 1.24; simulation:
·

m = 9.03 g/s, ∆p = 3.71 bar, σ = 1.26). The time
difference between the images is ∆t = 100 µs.

The experiment and simulation both reveal the same story, but in the case of simulation,
the Kelvin-Helmholtz instability is more pronounced and can be understood better and
described more in detail.

In Figure 5, the development of the Kelvin-Helmholtz instability is shown with velocity
profiles drawn over at cross-sections at horizontal intervals of 3 mm in the downstream
direction, starting at the wedge apex.

Fluid flow velocity at the throat of the Venturi microchannel is 30 m/s, where liquid
flows over the cavity and descents afterward towards the bottom wall of the channel,
where the flow divides into the upstream and downstream flow (1). Vapor fraction α
profiles for both phases are approximately uniform in both the fluid and vapor layers.
They are however discontinuous at the straight interface between the two (step 1). Shear
stress acts on the fluids due to discontinuity of the velocity gradient (velocity gradients are
shown by the black line in Figure 5), while vapor gradient locally promotes the generation
of instabilities and vorticity. The backflow due to the presence of the adverse pressure
gradient at 6 mm downstream from the throat in the vapor phase increases from a peak
value of 5 m/s to 13 m/s (step 2), which further increases shear stress. Increased shear
stress between the liquid and cavity interface results in the formation of ripples on the
interface, while the reentrant jet progresses further upstream. The attached cavity expands
and reaches its full size (step 2) and shortly thereafter (100 µs) in step (3) one can see the
first beginnings of ripples on the upper edge area of the vapor phase (approx. 6 mm from
the Venturi throat). This promoting the formation of instabilities (step 3) in addition to
the already present vertical shear stress between the liquid flow and the cavity interface
enables the formation of Kelvin Helmholtz instability.
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Figure 5. Development of Kelvin-Helmholtz instability with velocity profiles at individual cross-
sections. The time difference between the images is ∆t = 100 µs.

In step (4), 300 µs after the start of the instability formation process, we already observe
the formation of unstable local turbulent structures approx. 6 mm from the Venturi throat,
which are now confined to the shear layer. Due to their limited size, velocity gradients in
step (4) are still unchanged in comparison to step (1) and the rolling motion of turbulent
structures is not yet recognized. With time, the surface becomes more and more deformed
from the original straight boundary interface, and turbulent structures grow in size and
number (step 5). It seems that the vapor region is affected by the formation of turbulent
structures, here velocity, density, and momentum are low. Velocity profiles in the vapor
region change with instabilities continuously protruding deeper in the vapor region, finally
leading to the situation in step (5).

Instabilities in the vapor phase continue to grow from step (5), and the region of
high pressure between the cavities moves in the opposite direction to the main flow
towards the Venturi throat, from approx. 4 mm in step (5) to approx. 2 mm in step (6).
Advance in the direction opposite is related to the presence of the adverse pressure gradient
(step 6), with instabilities and turbulent eddies in later steps reaching the Venturi throat
section and causing full cavity separation and partial destruction of the vapor region in
the vicinity of the throat. The vapor phase in the vicinity of the throat does not reappear
until step (10) 900 µs after the start of the process. In steps (7–9) we notice the change
of the velocity profiles, caused by the separation of the cavity from the Venturi throat
and hence smoothing of the velocity profiles in the horizontal direction. The region of
constant velocity near the upper Venturi section wall is reduced and the velocity profiles in
horizontal direction become skewed. Regions of backflow are reduced in size and intensity.
In steps (7–9) generation of Kelvin Helmholtz instabilities increase further downstream
of the detached cavitation cavity. Finally, the entire detached cavitation cloud becomes
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engulfed in the border instabilities. In addition to the change of velocity gradient, the
vapor fraction α in the vertical direction becomes non-homogeneous and areas of slightly
higher vapor fraction α can be traced to the region where instabilities were initially formed.
The detached cavitation cloud together with all instabilities continues to flow downstream
and finally dissipates (not shown in this sequence).

In step (10), 900 µs after the start of the instabilities formation, cavitation cavity is
again formed at the Venturi throat section and the entire process is about to continue in
a quasi-periodic way. More insight into the instability formation process may be gained
from Figure 6, which shows an enlarged segment of the Venturi section relative to Figure 5.

Figure 6. A close-up view of the initial development of Kelvin-Helmholtz instability. The time
difference between the images is ∆t = 20 µs. The black line shows a 10% vapor fraction region limit.

Velocity vectors reveal the presence of the turbulent eddies within the vapor phase
and their interaction with the main flow above the discontinuity of the horizontal velocity.
Figure 6 also shows contours of 10% vapor region location.

Step (1) shows the initial situation with a turbulent eddy on the right side of the
observation region. Just next to the lower limit of 10% vapor region is the turbulent eddy
impingement point on the shear layer. On the left of the 10% vapor fraction region, we
observe the backflow, while on the right the turbulent eddy rotation causes the flow velocity
to be in the direction of the main flow. Impingement point marks the position of the large
variation of the shear stress gradient, on the left of the impingement point, the stress is
higher than on the right. The horizontal 10% vapor fraction region limit of the velocity
discontinuity is just above the impingement point. The transition from step (1) to step (2) is
marked with an additional depression of the horizontal 10% vapor fraction region limit.
The location of the impingement point and the horizontal 10% vapor fraction region has
moved to the right in step (2) relative to step (1), while the lower 10% vapor fraction region
has widened from the original location in step (1) to the newly established impingement
point of step (2).
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As the instability process continues in step (3) we observe gradual folding of the
lower 10% vapor fraction limit, even before we notice significant variations in the velocity
within the shear layer. We, therefore, speculate that the vapor fraction properties influence
the instability process through the variation of the flow density and the transfer of the
momentum. In step (3) we notice velocity variations within the main flow, corresponding
well to the vapor fraction variations in intensity and location. The process, first observed in
step (3) continues with step (4) showing increased spatial variations of the vapor fraction,
followed by velocity variations in the main flow. As a consequence, turbulent eddy, first
responsible for impinging the shear layer, is decayed into two turbulent eddies with an
additional one formed near the location of the original impingement point. The location
of the lower 10% vapor fraction region limit has moved in the direction of the Venturi
section throat.

Steps (5) to (8) show markedly increasing folding of the shear layer, coupled with the
additional breaking of the turbulent eddy into several smaller ones, including interactions
among neighboring turbulent eddies. Gradually location of the lower 10% vapor fraction
region moves further left towards the throat finally causing the detachment of the cavitation
cloud as described above for Figure 5. Folding of the shear layer is coupled with its gradual
thickening. Location, where the gradient of shear layer folding is high, is accompanied by
the regions of main flow deceleration and hence variations of the velocity and pressure in
the main flow.

5. Conclusions

Numerical simulation has provided additional insights into the formation of Kelvin-
Helmholtz flow instabilities in the Venturi section. The process is being able to cause the
shedding of cavitation clouds similar to the re-entrant jet or shockwave cases. Results
conform well to the available experimental data.

The formation of Kelvin-Helmholtz instabilities is determined by the large vertical
variations in the shear stress, vapor fraction, and the different physical properties of liquid
and vapor regions. The vapor with its much lower density and momentum is more
impacted by the instabilities creation as the liquid region. This promotes perturbations and
the development of the turbulent eddies in the vapor region. Turbulent eddy impingement
point on the shear layer point marks the position of the large variation of the shear stress
gradient. We observed the folding of the lines of constant vapor fraction within the shear
layer even before any velocity changes were noticed. Thus, the vapor fraction properties
may influence the Kelvin-Helmholtz instability formation process through the variation
of the density and the transfer of the momentum. As instabilities grow further, adverse
pressure gradient and velocity lead to the detachment of the cavitation cloud together with
all instabilities.

In both layers, Kelvin-Helmholtz instabilities for the case of cavitation in the Venturi
section express less pronounced rolling motion and are less periodic and symmetric in
comparison with their more well-known occurrences. This perhaps was the reason that
Kelvin-Helmholtz instability was not recognized before as a possible source of the cavitating
flow instabilities and cavitation cloud shedding.

More experimental and numerical studies will be required in the future to better
understand the formation of Kelvin-Helmholtz flow instabilities in cavitation flow and
their role in the cavitation shedding process.
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