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A B S T R A C T

Cavitation bubble collapse close to a submerged sphere on a microscale is investigated numerically using a finite
volume method in order to determine the likelihood of previously suspected mechanical effects to cause bacterial
cell damage, such as impact of a high speed water jet, propagation of bubble emitted shock waves, shear loads,
and thermal loads. A grid convergence study and validation of the employed axisymmetric numerical model
against the Gilmore’s equation is performed for a case of a single microbubble collapse due to a sudden ambient
pressure increase. Numerical simulations of bubble-sphere interaction corresponding to different values of
nondimensional bubble-sphere standoff distance δ and their size ratio ε are carried out. The obtained results
show vastly different bubble collapse dynamics across the considered parameter space, from the development of
a fast thin annular jet towards the sphere to an almost spherical bubble collapse. Although some similarities in
bubble shape progression to previous studies on larger bubbles exist, it can be noticed that bubble jetting is much
less likely to occur on the considered scale due to the cushioning effects of surface tension on the intensity of the
collapse. Overall, the results show that the mechanical loads on a spherical particle tend to increase with a
sphere-bubble size ratio ε , and decrease with their distance δ . Additionally, the results are discussed with respect
to bacteria eradication by hydrodynamic cavitation. Potentially harmful mechanical effects of bubble-sphere
interaction on a micro scale are identified, namely the collapse-induced shear loads with peaks of a few
megapascals and propagation of bubble emitted shock waves, which could cause spatially highly variable
compressive loads with peaks of a few hundred megapascals and gradients of 100 MPa/μm.

1. Introduction

Although cavitation at first sparked its interest in the scientific
community due to its negative effects, such as material erosion and
vibrations in hydraulic machinery [12], it is nowadays being utilized
for a wide variety of applications. Among others, we can find cavitation
in processes of surface cleaning [7], in various medical procedures [41]
and wastewater treatment [11]. Recently it has also been shown, that
hydrodynamic cavitation can be efficiently used for eradication of
bacteria [45] and even inactivation of viruses [24] in water. Despite the
progress, the key mechanisms behind the interaction between cavita-
tion bubbles and water contaminants are still unknown.

Considering a single cavitation bubble and a bacterial cell, we can
generally distinguish between their interaction on two different spatial
scales, where cavitation bubbles are either significantly larger
(≫ 1 μm) or of a similar size in comparison to bacterial cells (~1 μm).
Due to the large size difference in the former case, the presence of
nearby microorganisms in not believed to significantly affect the be-
havior of bubbles. This can be supported by previous studies by Teran
et al. [47], who investigated the interaction of bubbles with sediment

particles. On the other hand, nearby particles or microorganisms could
potentially affect the dynamics of bubbles of a similar size scale.

In the present paper, we address bubble-sphere interaction on a
microscale, where the presence of a nearby suspended spherical particle
could potentially have an important effect on bubble dynamics. Since
we are limited with observing the considered phenomenon experi-
mentally due to small spatial (~1 μm) and temporal scales (~10 ns), we
employ a purely numerical approach. Our main interest is to determine
how microbubble dynamics depends on the non-dimensional bubble-
sphere stand-off distance and their size ratio, and how this affects the
loads exerted on a spherical particle. Here, it has to be noted that
particles and microorganisms in reality adopt various shapes and sizes.
For example, single bacterial cells normally measure between 0.5 and
5 μm in length, with shapes ranging from spherical to more complex,
like spherocylindrical, helical, filamentous, etc. [36].

By considering an interaction of bubbles with spherical objects, the
present paper falls into a branch of bubble-sphere interaction studies.
Perhaps one of the first, who addressed this topic were Kalumuck et al.
[22]. They conducted numerical simulations of single bubbles nearby
structures of various shapes and characteristics by coupling boundary
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element method (BEM) and finite element method (FEM) for the fluid
and structure domain, respectively. Later followed Tomita et al. [50],
who showed that the velocity of a micro jet, that develops during the
bubble collapse, tends to increase with higher curvatures of a nearby
convex rigid structure and can surpass peak jet velocities that occur in
the case of a nearby flat surface.

Li et al. [33] conducted a numerical analysis of a gas bubble close to
a fixed and movable rigid sphere by using a BEM approach. The ob-
tained temporal development of bubble radius showed no difference
between the two cases for the growth phase of the bubble, while the
collapse time and minimum radius were slightly lower for the case of a
movable sphere. Similar topic was later addressed by Li et al. [29], who
proposed the use of BEM along with an auxiliary function to decouple
the mutual dependence between the force on a suspended sphere and its
movement. Their results show complex bubble dynamics in relation to
different values of the stand-off parameter and bubble-sphere size ratio,
such as annular jet development away from the sphere, toroidal bubble
splitting, and jetting towards the sphere. The same model was later
successfully utilized for the studies of bubble-sphere interaction near a
rigid wall [31] and beneath a free surface [30].

In the recent years this topic was also addressed experimentally.
Borkent et al. [4] researched particles in diameter between 30 and 150
μm that were suspend in water and served as nucleation sites in the
event of tensile wave propagation. The authors noticed an interesting
phenomenon of particle-bubble interaction, where a spherical particle
detaches from a collapsing bubble and is accelerated away. Ad-
ditionally, a secondary bubble inception was observed after collapse of
a primary bubble. Poulain et al. [43] researched the motion of a
spherical particle induced by a single spark-induced cavitation bubble.
The authors distinguished between three phases of particle motion: an
initial movement away from the expanding bubble, a change in direc-
tion due to bubble collapse, and a postcollapse phase, where the sphere
was further drawn towards the oscillating bubble. Later, an extensive
experimental study of interaction between a laser-induced cavitation
bubble and a rigid spherical particle was conducted by Zhang et al.
[53]. They identified three general cases of bubble collapse: a mush-
room-shaped, a pear-shaped, and a spherical-shaped collapse, along
with their dependence on the non-dimensional bubble-sphere distance.

In certain applications, deformability of a sphere is an additional
important factor to be considered besides the sphere’s ability to freely
move within the surrounding fluid. Both were accounted for by Goh
et al. [15], who numerically and experimentally studied spark-gener-
ated bubbles near an elastic sphere. Similarly to Kalumuck et al. [22],
the authors also utilized a coupled BEM-FEM solver which showed a
good match with the experimental results. Silicone rubber spheres with
elasticity modulus =E 312 kPa, which is similar to the elasticity of
bacterial cells with E~500 kPa [44], showed minimal deformations due
to bubble growth and collapse. Additionally, the sphere’s elasticity
seems to be of a minor importance for the dynamics of a spark-gener-
ated bubble in the presented case.

All the literature mentioned above is applicable to the bubble-
sphere interaction on a larger, millimeter scale, where the effects of
surface tension and viscosity play a minor role on bubble dynamics. The
former was taken into account by Gracewski et al. [16] and later Guo
et al. [17]. Using BEM, they evaluated interaction between a cavitation
microbubble ( =R 1.5 μeq m) and a red blood cell in an ultrasonic field.
Elasticity of the cell’s membrane was considered as surface tension,
which is linearly proportional with the areal expansion, while the cell’s
contents were described with the Tait equation of state [32] as water. In
most cases results showed formation of an axial jet away from the cell
and a maximum areal expansion of a cell in the order of 0.1%.

On the other hand, the existing experimental literature shows that a
bubble can cause membrane poration of a single cell and also micro-
poration of other materials, such as biochar [1]. Le Gac et al. [27] re-
ported the sonoporation of suspended human promyelocytic leukemia
cells using a single laser-induced cavitation bubble in a microfluidic

confinement. The authors attributed membrane damage to shear
stresses exerted on cells due to bubble-induced flow and observed a
poration probability of more than 75% for cells closer than 0.75 times
the maximum bubble radius. The same value of an effective range for
membrane poration was later reported by Zhou et al. [54], who
acoustically excited single microbubbles in vicinity of an oocyte. Si-
milarly, Li et al. [34] demonstrated a membrane poration of myeloma
cells, although in this case the main mechanism was the impact of a
microjet. The authors utilized a microfluidic chip to trap single sus-
pended cells and a laser induced cavitation bubble, which collapsed
asymmetrically due to a nearby solid boundary of the cell trapping
structure.

One can notice, that all the present numerical investigations on the
topic of bubble-sphere interaction utilize potential flow theory along
with BEM. We employ a different approach, a finite volume method
(FVM) along with the volume of fluid (VOF) method to resolve multi-
phase flow. This approach has already been shown to successfully re-
solve various cases of aspherical bubble dynamics, such as in vicinity of
a rigid wall [38,23], in a gravity field [26], bubble pair interaction
[18], etc. Its advantage lies in a possibility to consider nonlinear water
compressibility, which is necessary to resolve shock wave emission and
propagation upon bubble collapse.

Additionally, the obtained results are discussed with respect to
bacteria eradication in water. Potentially harmful mechanical effects of
observed bubble-sphere interaction on a micro scale are identified, and
include: impact of a high speed water jet, propagation of bubble
emitted shock waves, shear loads, and thermal loads.

2. Theoretical background and numerical model

In this section we present the considered conservation laws and
equations of state that along with adequate initial and boundary con-
ditions enclose a system of equations that describe the phenomenon of
bubble dynamics. Additionally we include Gilmore’s model that de-
scribes the dynamics of a single unbounded spherical bubble in a
compressible liquid. Since our approach is purely numerical, Gilmore’s
equation serves as a means to validate the main axisymmetric FVM-VOF
model in the present study.

2.1. The governing equations of bubble dynamics

In general, bubble dynamics can be mathematically described by the
principles of mass, momentum, and energy conservation. Continuity
equation of mass is given below. As can be seen from the right side of
Eq. (1):

∂
∂

+ ∇ =
ρ
t

ρU·( ) 0, (1)

mass transfer is not considered in the present study, therefore accu-
mulation of mass can be only attributed to the compressibility of fluids.
Here ρ represents density and U velocity vector field of the considered
fluid.

Conservation of momentum can be written as Eq. (2), where terms
on the left side represent the effect of inertial forces due to local and
convective acceleration, respectively. The right-hand side of the equa-
tion includes the effects of pressure, viscous, and body forces, respec-
tively. Here we neglect the effect of gravity due to a small scale of the
considered phenomenon. The effects of surface tension are included
with a body force acting on the water-bubble interface (see Section 2.4
for further details).

∂
∂

+ ∇ ⊗ = −∇ + ∇ +τ
t

ρ ρ pU U U f( ) ·( ) · (2)

Here p denotes pressure, f body forces, and τ the viscous stress tensor
that can be written for Newtonian fluids as:
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= ⎡
⎣

∇ + ∇ − ∇ ⎤
⎦

τ μ U U U I( ( ) ) 2
3

( · ) ,T
(3)

where μ is dynamic viscosity and I the unit tensor.
Energy balance is described by Eq. (4), which includes the effects of

thermal conduction on the right-hand side.

∂
∂

+ ∇ + = ∇ ∇
t

ρe ρe p k TU( ) ·( ( )) ·( ) (4)

Here k represents thermal conductivity and e total specific energy,
which can be written as

= − +e h
p
ρ

U
2

,
2

(5)

where h is specific enthalpy.

2.2. The considered equations of state

Since we wish to capture shock waves upon bubble collapse, a
simplified Tait equation of state for water is employed, which considers
its nonlinear compressibility. It is given by Eq. (6):

⎜ ⎟
⎛
⎝

⎞
⎠

=
ρ

ρ
K

K
,

n

ref ref (6)

where the bulk modulus of water K at pressure p is calculated as
= + −K K n p p( )ref ref . The term n is the density exponent and Kref the

reference bulk modulus at the reference pressure pref . For water, we
consider the values of =n 7.15, and =K 2.2ref GPa, =ρ 998.2ref kg/m3 at

=p 101325ref Pa [32].
Gas inside the bubble is modeled with the ideal gas law, which

states

=ρ
p

T
,R

M
gas

(7)

where Rgas and M are the universal gas constant and molar mass, re-
spectively.

2.3. Gilmore’s model for a spherical bubble

The dynamics of a single unbounded spherical bubble inside a
compressible liquid can be described by the Gilmore’s equation [14],
given in Eq. (8).

⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎛
⎝
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̇
3
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1
̇2

(8)

This is a second order nonlinear ordinary differential equation,
whose solution represents a time dependent bubble radius R t( ), from
which we can evaluate the bubble wall velocity R ̇ and acceleration R̈.
Looking at the equation, we can find additional terms, C and H, which
represent the speed of sound and the enthalpy difference at the liquid
just outside the bubble wall. Both can be evaluated following Eq. (9)
and by knowing the appropriate boundary conditions ( ∞ ∞p ρ, ) far away
from the bubble. The term B represents the Tait’s pressure, defined as

=B K n/ref .

=

=
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(9)

Gilmore’s model also accounts for surface tension and the principal
effects of viscosity, which can play an important role on bubble dy-
namics at smaller scales. Both effects are modeled as a pressure jump
across the bubble–liquid interface, between the internal bubble

pressure Pi and the liquid pressure just outside the bubble wall P, both
given in Eq. (10). In the present case the bubble contains both water
vapor and air, which is assumed to behave adiabatically.

= − −

= + + −∞( )( )
P P

P p p p

i
σ

R
μR
R

i v
σ

R v
R
R

γ

2 4 ̇

,0
2 3

eq

eq

(10)

Here σ denotes the surface tension coefficient, pv vapor pressure, γ
adiabatic index, ∞p ,0 the initial ambient pressure, and Req the corre-
sponding bubble radius at equilibrium.

2.4. Numerical model

The main numerical model [2] is based on the finite volume method
to solve the aforementioned system of equations in Section 2. We em-
ploy the VOF method to formulate multiphase flow, through which we
track the interface between both phases (liquid, gas) by solving the
continuity equation (Eq. (11)) for the volume fraction of water αw.

∂
∂

+ ∇ =
α ρ

t
α ρ U

( )
·( ) 0w w

w w w (11)

Volume fraction of the gaseous phase αg can be obtained through
Eq. (12):

+ =α α 1,g w (12)

which states that in each control volume the volume fractions of both
phases sum to unity. Based on the known volume fraction field, we can
determine the volume-averaged material properties throughout the
computational domain. Examples for calculation of density and dy-
namic viscosity are given in Eq. (13) below.

= − +

= − +

ρ α ρ α ρ

μ α μ α μ

(1 )

(1 )
w g w w

w g w w (13)

Following this, a single momentum (Eq. (2)) and energy (Eq. (4))
equations are solved, from which the shared velocity and temperature
fields are obtained based on the material properties from Eq. (13).
Additionally, the effects of surface tension are included in the proce-
dure with a body force in the momentum equation, according to the
continuum surface force model [5]. The pressure jump across the li-
quid–gas interface is modeled with a volume force:

=
∇

+
F σ

ρκ α

ρ ρ( )
,g g

g w
vol 1

2 (14)

where κg denotes the bubble surface curvature, calculated as:

= ∇κ
n
n·
| |

.g (15)

Here, n is a bubble surface normal, which is obtained as a gradient
of the gas volume fraction field: = ∇αn g.

For all calculations the PISO pressure–velocity coupling algorithm
[21] was employed, along with a first order implicit temporal dis-
cretization. Regarding the spatial discretization, we used the pressure
staggering option (PRESTO!) scheme [40] for pressure interpolation
and the second order upwind scheme for density, momentum, and en-
ergy interpolation. In the cells near the water-bubble interface, a Pie-
cewise linear interface calculation (PLIC) geometric reconstruction
scheme [52] was used, which assumes that the interface between two
fluids has a linear slope within each cell. Boundary conditions at the
end of the computational domain were set to wave non-reflecting
pressure outlet, which was placed reasonably far away from the bubble
( R~100 max) to minimize its influence on the considered phenomenon.
The boundary conditions are based on characteristic wave relations
derived from the Euler equations [48,49], from which the primitive
flow quantities can be obtained. To solve the obtained system of
equations on a boundary, the amplitude of the incoming and outgoing
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waves must be determined. The amplitude of the latter are computed by
using extrapolated values of flow derivatives from within the compu-
tational domain, whereas the amplitude of the incoming pressure and
entropy waves are computed from the Linear relaxation method of
Poinsot and Lelef [42] and Selle et al. [46].

Additionally, in the case of bubble-sphere interaction simulations,
we utilize a diffusion based dynamic mesh smoothing method to adapt
the numerical grid to the sphere’s movement after each time step. This
method is based on the Laplace’s equation

∇ ∇ =D u·( ) 0, (16)

from which vertex velocities u can be obtained according to the dif-
fusion coefficient D and velocities at the sphere’s boundary. In our case,
a nonuniform diffusion coefficient was utilized, defined as a reciprocal
value of the normalized cell volume.

3. Results

3.1. An equilibrium micro-bubble in an infinite fluid

At first, we consider a single unbounded cavitation bubble of radius
= =R R 1 μeq0 m, at equilibrium with an initial ambient pressure of one

atmosphere =∞p 101325,0 Pa and an ambient temperature of 20 °C.
According to Eq. (10) the corresponding internal bubble pressure
amounts to = ×P 2.47 10i

5 Pa. We would like to calculate bubble’s re-
sponse to a sudden ambient pressure change, to determine the relevant
cases for further analyses of bubble-sphere interaction. Different am-
bient pressures ∞p were taken into account, based on the typical values
one could expect to occur in the case of hydrodynamic cavitation:

=∞p 10 , 10 , 10 , 10 , and 103 4 5 6 7 Pa. In this case, these values do not
represent the operating pressures of a given hydraulic system, but ra-
ther a range of pressure values that can locally occur within a cavitating
flow, e.g. the ambient pressure of a microbubble increases due to a
nearby or surrounding bubble cloud collapse. Similar values to ones
used here were also considered by previous authors that researched
material pitting and erosion from a single cavitation bubble [19,8].
Additionally, it has been shown that the local pressures that drive
bubble collapse vary across spatial scales [6] and can in some cases
exceed 100 MPa [37]. The considered temporal dependence of ambient
pressure is given in Eq. (17).

= ⎧
⎨⎩

<
⩾∞

∞

∞
p t

p t
p t

( )
, for 0s,

, for 0s
,0

(17)

Vapor pressure, surface tension coefficient and viscosity of water
were set to =p 2339v Pa, =σ 0.0728 N/m, and =μ 0.001w Pa·s, re-
spectively. Looking at the obtained results from the Gilmore’s model in
Fig. 1, we can observe that bubbles on a scale of ~1 μm behave dif-
ferently compared to the larger ones. Firstly, they are well below the
critical radius of asymptotic linear growth, which is the reason, that in
the case of a sudden ambient pressure drop ( =∞p 103 and 104 Pa), the
bubble oscillates to a new equilibrium state. Interestingly, the magni-
tude of oscillations remains relatively small, not surpassing 35% of
initial radius even in the case of =∞p 103 Pa. As expected, the case with

=∞p 105 Pa does not show a notable change in bubble radius, due to
bubble’s initial equilibrium ambient pressure of 1 atm. Moving forward,
to the bubble compression region, we can see that the oscillations at
higher ambient pressures happen on roughly one order of magnitude
smaller temporal scales. In the case of =∞p 106 Pa, the collapse driving
pressure is not high enough to cause a bubble to collapse violently, but
rather induces a weak response ( ≈ 2.1R

R
max
min

and = ×P 5.5 10i,max
6 Pa) in

comparison to the case with =∞p 107 Pa, where ≈ 6.3R
R

max
min

and
= ×P 5.59 10i,max

8 Pa. According to the obtained results, bubble growth
in the considered ambient pressure drop cases ( =∞p 10 and103 4 Pa) is
relatively small ( < 1.35R

R
max

0
) and is therefore not believed to have an

important effect on the bubble-sphere interaction. Since we are inter-
ested in potentially harmful mechanisms of bubble-particle dynamics,
only the latter case ( =∞p 107 Pa) of bubble collapse is chosen for fur-
ther analyses.

Following that, we determine the effects of viscosity, surface tension
and consideration of vapor pressure on bubble dynamics for the se-
lected case. A comparison between the obtained results from the
Gilmore’s model is given in Fig. 2. We can see that by not accounting for
surface tension effects, the bubble reaches roughly 1.6-times smaller
collapse radius, which leads to the overestimation of collapse pressure
by the factor of 7. Viscous effects at the bubble wall seem to play a
lesser role in the considered phenomena, with 1.4% shorter collapse
time and 3.9% smaller collapse radius for the inviscid case. On the other
hand, the neglection of vapor pressure seems to have no notable effect
on bubble size evolution. This can be explained by the fact, that vapor
pressure of =p 2339v Pa presents less than 1% of the initial, equili-
brium bubble pressure, which further decreases during the bubble
collapse. Because of this, we consider purely air bubbles and neglect
their vapor content in further calculations.

3.1.1. Grid convergence study
The selected bubble collapse case, that serves as a basis for further

analyses, was also numerically evaluated in the axisymmetric numer-
ical model (see Section 2.4). In order to determine the adequate com-
putational grid resolution and assess an error that arises from spatial
discretization, we performed a grid convergence study and a Ri-
chardson extrapolation of the obtained results. Similar initial pressure
conditions were used as with the previously used Gilmore’s model: an
internal bubble pressure of = + = ×∞P p 2.47 10i

σ
R,0
2 5

0
Pa and an am-

bient pressure of =∞p 107 Pa. Additionally, uniform initial temperature
and velocity fields of 20 °C and 0 m/s were chosen. For all axisymmetric
calculations surface tension coefficient and viscosity are set to the same
value as in the Gilmore’s model, whereas viscosity of air is also con-
sidered with = × −μ 1.8 10g

5 Pa·s. Boundary conditions at the end of the
computational domain were set to wave non-reflecting pressure outlet
with a static pressure of 107 Pa, temperature of 20 °C, and volume
fraction of water αw set to unity. We performed all grid convergence
study simulations on an orthogonal grid with a constant resolution in
the bubble domain, which gradually coarsens with distance away from
the bubble. Computational time step was adapted according to the
Courant-Friedrichs-Lewy condition with =C 0.4max . We set theFig. 1. Equilibrium micro-bubble response to sudden pressure change.

Fig. 2. Effects of neglecting vapor pressure, viscosity of water and surface
tension.
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convergence criteria with the values of scaled residuals for continuity
and momentum equations to −10 6, and energy equation to −10 9, which
on average resulted in ten to fifteen iterations per time step.

Altogether, six simulations were carried out, with grid resolution
ranging from 50 and up to 566 cells across the initial bubble radius R0,
which corresponds to 48 thousand and 1.1 million of total cells, re-
spectively. The obtained minimal bubble radii are presented in Table 1,
along with the estimated errors according to the Richardson extra-
polation.

The evolution of bubble shape until the second collapse is given in
Fig. 3 for a case with a grid resolution of 283 and 33 computational
cells across the initial and minimum bubble radius, respectively. We
chose this spatial resolution for the forthcoming simulations of bubble-
sphere interaction, since it offers a reasonable trade-off between the
estimated minimal bubble radius error (− 3%) and the required com-
putational times. According to Eq. (10), such an underestimation of the
collapse radius would scale to roughly 14% overestimation of max-
imum bubble pressure Pi. Fortunately, this is not the case when one
does not assume uniform and adiabatic conditions within the bubble.
The peak calculated pressures in the domain for the selected resolution
were =p 1.29max GPa, which only is 3.5% above the extrapolated value
of 1.25 GPa.

3.1.2. Comparison to the Gilmore’s model
Additionally, the obtained results from the axisymmetric model

were compared to the solution of the Gilmore’s equation. As can be seen
from Fig. 4, the match between the curves until the final stage of the
first collapse is very good. With =R 120min nm, the axisymmetric model
predicts notably smaller collapse radius than 160 nm of the Gilmore’s
equation. Since all parameters, initial, and boundary conditions be-
tween both models were kept the same, we attribute the difference in
the final stage of the collapse to the fact, that the axisymmetric model
does not assume uniform and adiabatic conditions within the bubble,
but solves the energy equation (Eq. (4)) instead. Since heat and work
flows go in opposite directions, we can expect some heat loss from the
bubble into the surrounding liquid. In the Gilmore’s model, this can be
indirectly accounted for by reducing the polytropic index of air to a
value between 1 and 1.4, that correspond to isothermal and adiabatic
process, respectively. A good match in the minimum radius can be
found with a polytropic index of ≈ 1.28, which can be seen in Fig. 4.
According to Koukouvinis et al. [26], this parameter can be fitted, so
that the results match experimental data for each case. Looking at the
bubble collapse times, a deviation of<1% can be observed between both
models. Even in this case the predicted rebound by the Gilmore’s model
is noticeably larger. This was already observed by previous researchers
[13,23], the former of whom concluded that the energy radiated into
the surrounding liquid at the beginning of the rebound is not correctly
predicted by the Gilmore’s model, which affects the magnitude of the
rebound.

3.2. Bubble-sphere interaction

In this section, we address the key topic of the present study: a
bubble-sphere interaction on a micro-scale. After a brief description of
the numerical model setup, follow the results which cover the effects of
a nearby sphere on a bubble collapse dynamics and vice versa.

3.2.1. Model setup
In the present study, we treat a sphere as a rigid boundary with no

slip boundary condition, that can undergo rigid body motion due to
external forces. These include hydrodynamic drag and a force arising
from a pressure difference across a sphere, which are computed by
numerical integration of pressure and shear stress over the surface of a
sphere. Since we consider an axisymmetric case, only one degree of
freedom needs to be resolved – translation of a sphere in the axial di-
rection. Additionally, we utilize a diffusion based dynamic mesh
smoothing method to adapt the numerical grid according to the sphere
movement after each time step. Density of a sphere was set to

=ρ 1100s kg/m3, which is the average density of bacteria, such as E. coli
[3].

A scheme of the considered phenomena is shown in Fig. 5. Here, two
non-dimensional parameters δ and ε are defined as an initial stand-off
distance and a sphere-bubble size ratio, respectively. Both, initial and
boundary conditions were kept the same as in the case of a spherically
symmetric bubble collapse (see Section 3.1.1), with initial bubble ra-
dius of =R 1 μ0 m. We used similar numerical grids to the previous
cases, with an exception of cells in the direct vicinity of a sphere, which
were adapted to transition between curved walls of the sphere and the
orthogonal cells in the rest of the computational domain.

3.2.2. Results
In total, we carried out nine simulations of bubble-sphere interac-

tion, corresponding to all the value-pairs of non-dimensional bubble-
sphere distance =δ 0.9, 1.1, 1.3, and their size ratio =ε 0.5, 1.0, 1.5.
For reference, the two most studied cases of bubble dynamics so far, an
unbounded bubble and a bubble close to an infinite rigid wall corre-
spond to = ∞δ and = ∞ε , respectively. We expect the influence of
bubble-sphere interaction to grow with the values of δ decreasing and ε
increasing.

Looking at Fig. 6, we can see the effect of both parameters on (a) the
nondimensionalized bubble collapse radius =∗R R

Rmin
min

0
and (b) the

maximum velocity vmax within the computational domain. For both, we
can notice a similar trend of asymptotic decrease towards the value
corresponding to the unbounded case ( = ∞δ ). For all axisymmetric
cases the equivalent minimum bubble radius Rmin is calculated from the
minimal bubble volume by assuming the spherical shape, as is common
in this type of studies. Results also seem to adhere to the initial ex-
pectations across different values of ε, which seems to mostly affect the
solutions with smaller values of δ. In addition to increasing the bubble
collapse radius and therefore decreasing the overall collapse intensity
(Fig. 6(a)), the presence of a spherical particle also prolongs the col-
lapse time. Also interesting is the fact, that the obtained results already
vary significantly on a relatively small parameter space considered in
the present study. Maximum velocity ranges from ≈ 500 to 2100 m/s for
attached bubbles, which indicates the occurrence of vastly different
bubble shape development.

The latter can be seen from Fig. 7, where bubble shapes in time of
collapse are given for all nine cases. Overall, the bubble shape evolution
seems to congrue within each simulation set with the same δ . Therefore
we can observe a longitudinal collapse shape for attached bubbles with

=δ 0.9, and almost spherical collapses with =δ 1.3. On the other hand,
the cases with =δ 1.1 exhibit a shape that falsely implies a postponed
development of an axial jet away from the sphere, which is not the case
(see Fig. 9(d) for the detailed velocity field in the beginning of the
bubble rebound). Interestingly, only the case (c) with =δ 0.9 and

Table 1
Mesh study and Richardson’s extrapolation of minimal bubble radius and peak
domain pressures.

Computational cells per
R0

No. of
cells [10 ]3

Rmin [nm] Estimated error
[%]

pmax
[GPa]

50 48 99.2 −17 1.45
100 88 106.7 −11 1.41
200 205 113.9 −5.1 1.32
283 380 116.3 −3.0 1.29
400 583 118.1 −1.5 1.27
566 1090 119.1 −0.76 1.26
∞ 120.0∗ 1.25∗

∗ Estimated values according to Richardson extrapolation.
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=ε 1.5 shows a clear development of a high-speed annular jet towards
the sphere’s surface. One can also observe a consistently more pro-
nounced deviation from the spherical shape with larger values of ε. In
all other cases the jetting never fully develops and is diminished upon
the bubble’s rebound. This is consistent with the previous work of Liu
et al. [35], who researched free and encapsulated bubbles in an ultra-
sound field and noticed that the shape oscillations are less likely to
occur for micrometer sized gas bubbles since the surface tension sup-
presses the development of aspherical shape modes. In our case, we do
not relate this to the direct effects of surface tension, which acts in a
way to keep the bubbles spherical, as bubbles in the present case are
still primarily driven by pressure and inertial forces (a collapsing
bubble with =R 0.12min μm and =v 500max m/s has an internal pressure

due to surface tension of roughly = 1.21σ
R

2
min

MPa, as opposed to the
collapse driving pressure − =∞p P 9.75i,0 MPa and inertial pressure of

=ρ v 125w
1
2 max

2 MPa). We attribute this to the magnifying effects of
surface tension on the internal bubble pressure, which causes larger
bubble collapse radii Rmin as opposed to the case with neglected surface
tension. This was already observed in Section 3.1, where Rmin varied by
a factor of 1.6 between both cases. Because of this the ratio between the
maximal and minimal bubble radii is significantly reduced and bubbles
have a smaller chance to fully develop aspherical shape features, such
as axial jets, etc.

We refer the reader to Figs. 8 and 9, where a bubble shape (black
contour line) development and the corresponding pressure (upper half)
and velocity (lower half) fields are presented for cases (c) and (e) of

Fig. 3. Evolution of the bubble–liquid interface (black contour line) and the corresponding pressure field: (a) at the beginning of simulation with =R 1 μ0 m, (b)
when the bubble halves its radius, (c) at the time of the first bubble collapse, (d) shortly after the bubble collapse, when a shock wave is emitted, (e) at the time of
maximum rebound radius, and (f) during the second collapse. Please mind a unique pressure legend range for each subfigure.
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Fig. 7, respectively. As mentioned earlier, the former exhibits a unique
bubble behavior with a thin annular jet development towards the
sphere while the latter shows a similar response to the other two cases
with =δ 1.1. For each case, four subfigures are added representing
conditions at the time of (a) initialization, (b) bubble reaching half of its
initial size, (c) jet development, and (d) shortly after the collapse, when
a shock wave is emitted. Contours for cases with =δ 1.3 are not shown
at this stage, since the bubbles do not significantly deviate from their
initial spherical shape during the vast majority of their lifetime.

In the first stage of collapse, an attached bubble predominantly
shrinks in the radial direction and establishes a sharp contact angle with
a sphere, as opposed to an initially blunt angle. A typical pressure field
outside the farther bubble wall develops, which drives the bubble wall
towards the sphere, causing a jet development shortly before the col-
lapse ( =t 10.0 ns). Opposite to the classic case of a single axial jet, we
can observe a development of a thin and very fast annular jet, which
reaches the maximal velocity of 2100 m/s. Lately, Lechner et al. [28]
conducted a numerical study of a bubble growth and collapse in ex-
treme vicinity of a rigid wall ( =δ 0.048), which shows a similar de-
velopment of a thin and fast (≈ 2000 m/s), although axial, jet towards
the surface. After the jet hits the sphere’s surface, causing a water
hammer pressure in order of a few GPa, it radially flows through the
toroidal part of the bubble, away from its center. Meanwhile the bubble
rebounds and expands along the sphere’s surface, which is later

accompanied by the development of a secondary axial jet.
All three evaluated cases with =δ 1.1 show a similar bubble beha-

vior. At first, they deform from the initial spherical into an egg-like
shape (Fig. 9(b)). Following that, we can observe a pressure and velo-
city field on the farther (left) half of the bubble that is similar to the
previous case, which implies a start of the jet development towards the
sphere. This is consistent with the recent research of Yamamoto and
Komarov [51], who numerically addressed liquid jet directionality of a
collapsing bubble near a gallium and silicone droplet, and showed a
consistent jetting towards the gallium (higher density than water) and
away from the silicone droplet (lower density than water). Never-
theless, the difference in our case lays on the other side, closer to the
sphere, which also starts progressively accelerating towards the bubble
center. A somewhat similar response can be seen in the previous lit-
erature [29,53], where larger bubbles close to spherical particles were
experimentally and numerically studied. There we can see bubbles
developing two opposite axial jets, which causes a bubble to form a
toroidal shape. This is not the case in the present study, where further
jet development is prevented by the previously discussed effects of
surface tension ( ≈R 0.12 μmin m). Shortly after collapse, at =t 10.2 ns, a
pressure shock wave is emitted and the bubble rebounds. The magni-
tude of a shock wave is not uniform along the bubble’s circumference,
as is exhibits its maximum of 233 MPa ( =t 10.2 ns) towards the sphere.

As we saw previously, a relatively small change in the distance and
bubble-sphere size ratio can manifest in a vastly different micro-bubble
dynamics. Now the question remains, to what degree this also affects

Fig. 4. Comparison with Gilmore’s model.

Fig. 5. A schematic representation of the considered setup.

Fig. 6. Values of (a) non-dimensional collapse radius and (b) maximal domain velocities for the considered δ – ε value pairs.

Fig. 7. Bubble shapes at the time of minimal radius Rmin for all the evaluated
pairs of parameters δ and ε .
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the loads exerted on a spherical particle and its movement. For this
reason, the peak values of maximum and average quantities at sphere’s
surface, such as (a) pressure, (c) shear stress, and (d) temperature in
relation to δ and ε are given in Fig. 10. The reason for including the
peaks of the average values is to identify whether the load on a sphe-
rical particle is of a more local or global nature. In the former case, we
would expect a significant difference between both values, while they
should be of a similar magnitude in the latter case. Overall, the cases
with attached bubbles ( =δ 0.9) show the largest and most spatially
variable loads on a nearby particle. This can be best seen on subfigures
(a) and (d), which show peak pressure and temperature values. From
the latter we can also notice, that thermal load is only relevant for cases
of attached bubbles, where a collapsing bubble is in the direct contact
with the surface of a particle. The same cannot be said for compressive
and shear loads. Looking at the peak average pressures, we can see that
even for the least violent case with =δ 1.3 and =ε 1.5, they surpass the
ambient pressure =∞p 10 MPa by a factor of two and additionally ex-
hibit a peak in average shear stress of 0.36 MPa. Also convincing are
peak pressure differences across a particle in Fig. 10(b), which show a
very strong relation to peak maximal pressures. This further confirms
the local nature of peak pressure loads, which occur when bubble-
emitted shock waves propagate past them.

Maximal (a) velocity and (b) acceleration of a sphere are also in-
cluded in Fig. 11. Here we can see that the order of magnitude for
velocity is similar between the evaluated cases ranging from 5 to 30 m/
s, whereas the maximum acceleration differs by roughly 15-fold

between the two extreme cases. Here, it is worth mentioning that the
maximal force in the axial direction on a sphere grows with its size, as
one might expect, but the corresponding acceleration of the particle
adheres to opposite trend. The reason for this is in mass difference
between the differently sized spheres, which goes from × −5.8 10 16 kg
for =ε 0.5 to × −1.6 10 14 kg for =ε 1.5.

4. Discussion

In this section, the obtained results are discussed with respect to
bacteria eradication in contaminated water. We focus mainly on the
potentially destructive mechanical factors that arise from the collapse
of a single microbubble in vicinity of a bacterial cell, although hydro-
dynamic cavitation might offer additional mechanisms for cell damage,
such as nucleation within the cell or its envelope, expansion of internal
gas bodies, and formation of free radicals, which could inflict lethal
oxidative damage on bacteria [55].

At this point, it has to be noted that bacteria in reality tend to de-
form under external loads and adapt to their environment. Their stiff-
ness, shape, and size can vastly differ across species and strains.
Furthermore, cell’s characteristics also depend on its growth phase and
environment. By considering rigid suspended spherical particles in this
study, we neglect their internal structure and ability to deform under
load. Nevertheless, we consider that the present results are still relevant
to address the likelihood of previously suspected mechanical effects to
cause cell damage, such as impact of a high speed water jet,

Fig. 8. Bubble shape development along with pressure (upper half) and velocity (lower half) contours for =δ 0.9 and =ε 1.5. Please mind a unique pressure legend
range for each subfigure.
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propagation of bubble emitted shock waves, shear loads, and thermal
loads [55]. Firstly, looking at the previous studies of bubble-deformable
sphere interaction on both, micro [16,17] and macro scale [22,15],
reported relatively small areal deformations (<0.2%) of spheres with
similar stiffness as herein considered bacterial cells. Secondly, the au-
thors report a minor influence of sphere’s deformability on bubble
dynamics, which is further substantiated by the present study, as the
considered cases with =δ 1.3 already show a minor influence of a
nearby spherical particle on bubble dynamics (see Figs. 6 and 7).

As we have seen in Section 3.2.2, the peak loads exerted on a rigid
spherical particle can exceed pressures of 1 GPa, shear stresses of
100 MPa, and temperatures of a few thousand Kelvins. If we compare
these values against the modulus of elasticity for bacteria E. coli,
E ~0.5cell MPa, and their envelopes, −E ~10 100env MPa [9,20,44], we
can identify a high potential for cell’s structural disruption. As ex-
pected, the highest levels of particle loads were found for the cases of
attached microbubbles. Unfortunately, the existence of bacteria-at-
tached microbubbles has not been yet researched. Therefore we decided
to select two more plausible cases for further evaluation. The first case,
corresponding to =δ 1.3 and =ε 0.5, is chosen as a scenario with the
minimal impact on bacterium, whereas the second case, with =δ 1.1
and =ε 1.5, is selected as the most realistic scenario with maximal loads
exerted on bacterial cell.

First, we take a look at the temporal development of sphere’s ve-
locity and acceleration for both selected cases (Fig. 12(a)). Here, we can
see that initially sphere starts to accelerate towards the bubble and
reaches the peak velocity of ≈ 5 to 15 m/s. Upon bubble compression,

the pressure field outside the bubble eventually surpasses the ambient
pressure =∞p 10 MPa which causes the pressure gradient at the loca-
tion of a sphere to change direction towards the bubble. This causes the
bubble to accelerate in the opposite direction. The peak acceleration is
achieved at the time of shock wave propagation past the sphere, and
ranges in the order of a few 1010 m/s2, which corresponds to the max-
imal force in the order of 100 μN.

Not surprisingly, the peak pressures and shear stresses exerted on a
sphere’s surface coincide with peak accelerations, which further con-
firms the importance of considering the nonlinear compressibility of
water and bubble emitted shock waves in studies of similar type.
Additionally, maximum shear loads exhibit a lesser local maximum that
follows the propagation of a shock wave and is due to sphere reaching
its peak velocity away from the bubble. As we can see from Fig. 12(b)
and (c), the loads during the second bubble collapse exhibit a relatively
small damage potential in comparison with the first one, as their peaks
differ by a roughly one order of magnitude. Additionally, thermal load
also seems to be irrelevant in the case of non-attached bubbles, as we
can see from Fig. 12(d), that temperature change at the location of a
sphere is negligibly small, and well below the threshold of cell death,
i.e. 70 °C for E. coli [36]. The latter mechanism seems to be only ap-
plicable for attached microbubbles or microbubbles in extreme vicinity
of bacteria.

Similar conclusions can be also drawn for an impact of a high speed
water jet. As we have seen in Section 3.2.2, the vicinity of a rigid
spherical particle alone does not induce bubble jetting towards its
surface, which would be even less likely to occur for an actual cell due

Fig. 9. Bubble shape development along with pressure (upper half) and velocity (lower half) contours for =δ 1.1 and =ε 1.0. Please mind a unique pressure legend
range for each subfigure.
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to its compliant nature. An exception to this is the case with =δ 0.9 and
=ε 1.5, which also exhibits other damaging mechanisms (high tem-

peratures, pressures, and shear loads), but is not considered as very
relevant in a more realistic setting. From this we can conclude, that a
high-speed jet impact and related cell damage are unlikely to occur on
the investigated spatial scale. However, microbubble jetting could po-
tentially still develop in the presence of other jet drivers, e.g. shock
wave induced microbubble collapse in vicinity of bacterium, which
would be an interesting topic for further research.

Looking at Fig. 12(c) reveals peak shear loads of 2 and 5 MPa for
both chosen cases. As mentioned before, the peaks can be attributed to
shock wave-induced particle acceleration, which results in an order of
magnitude higher values compared to the bubble wall-induced flow
around the sphere. By comparing peak values to shear modulus of both
cell membranes of E. coli, ≈G 10 MPa (an approximation based on the
work of Hwang et al. [20], who report areal stiffness of the outer and

inner E. coli membrane to be 237 mN/m and 240 mN/m in their re-
laxed state, respectively), we can observe a high damage potential. This
is especially promising due to the fact, that the outer membrane starts
to exhibit a significant stress softening after it undergoes an initial areal
expansions in the order of a few percent [20]. Based on this and the
findings of previous researchers [27,54] we see bubble collapse induced
shear loads as one of the most likely mechanisms for bacterial cell
disruption, which should be further researched in the future.

As recently reported by Pandur et al. [39], hydrostatic pressure
loads of more than 120 MPa are needed for destruction of liposomes,
spherical vesicles that can act as a model system for bacterial lipid bi-
layers. Therefore the magnitude of peak pressure alone does not seem
likely to play a relevant role for bacteria destruction in the case of
hydrodynamic cavitation. Perhaps one of the key attributes of peak
compressive loads induced by shock wave propagation is their spatial
variability, which means very high pressure gradients at the cell’s

Fig. 10. Overall maximum (solid line) and maximum average (dashed line) values of (a) pressure, (b) pressure difference, (c) shear stress, and (d) temperature at the
surface of a sphere for the considered δ – ε value pairs. Values on vertical axes are plotted on a logarithmic scale.

Fig. 11. Overall maximum values of (a) velocity and (b) acceleration of a spherical particle for the considered δ – ε value pairs.
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surface, in the order of 1014 Pa/m. The latter is expected to induce a
strong response in bacterial envelope, causing high local stresses and
deformations, and could also be potentially harmful to even smaller
pathogens, such as viruses [24], that normally measure from 80 to
300 nm in diameter [36].

To further support our findings, shock wave propagation is showed
for both selected cases in Fig. 13. The left column corresponds to the
Case 1 and right to the Case 2, respectively. For both, four pressure
fields are given that correspond to a similar time in bubble-sphere in-
teraction. In the first row, we can observe a spherical wave front for the
Case 1, whereas the bubble-sphere interaction seems to magnify the
peak pressures (161 MPa) in the direction towards the sphere for Case
2. Looking at the second row, we can notice a significant pressure front
magnification upon its impingement on the sphere’s surface. In Case 2
the peak value of 181 MPa even surpasses the one at the time of shock
wave emission (161 MPa). Following that, a part of the initial pressure
wave is reflected back towards the rebounding bubble, which forms a
secondary wave front and a low pressure area between the bubble and a
sphere. Subfigure (c2) implies formation of a tensile wave following the
secondary wave front. Unfortunately, the magnitude of a tension wave
could not be resolved by the current solver, since it does not allow for
negative absolute pressures. In the last row of Fig. 13, we can see how
the main shock front propagates past the sphere, still causing high
pressure gradients at its surface even though peak pressures decrease to
roughly 30 MPa.

The results of the present study show increased magnitudes of
bubble-bacteria interaction with larger values of ε, which implies that
cavitating flow with smaller bubbles could be more aggressive towards
bacteria. This can be achieved by increasing flow velocities and system

pressures, which is already known from the previous material erosion
studies [10]. These conclusions are of course merely a very rude esti-
mate, since we are considering a rigid object in an interaction with a
single bubble. On the other hand, past research [45,25] point to su-
periority of supercavitating flow in bacteria eradication. Here we sus-
pect a completely different type of bubble-bacteria interaction, namely
the bacteria passing through a large stable bubble and hence being
exposed to a very rapid pressure drop and consequent pressure re-
cuperation. This type of effect can only be modeled once the bacter-
ium’s interior structure and envelope properties are adequately con-
sidered, which is one of the goals for the future research.

5. Conclusions

The aim of the present paper was to research the behavior of single
cavitation microbubbles ( =R 1 μeq m) in vicinity of a submerged sphere
on a similar spatial scale, and to determine how this affects the me-
chanical loads exerted on a sphere. Due to a small spatial (~1 μm) and
temporal (~10 ns) scales of the considered phenomena a purely nu-
merical approach was used. We performed numerical simulations by
using a FVM-VOF approach with inclusion of surface tension, viscous
effects, and nonlinear compressibility of water to resolve bubble
emitted shock waves upon its collapse. The final model was established
based on a grid convergence study and comparison to the Gilmore’s
model for a simpler case of a collapsing unbounded spherical bubble.

We presented results for various value-pairs of two nondimensional
parameters, δ and ε, which show vastly different bubble collapse dy-
namics across the considered parameter space, from the development of
a fast thin annular jet towards the sphere to an almost spherical bubble

Fig. 12. Temporal development of (a) sphere’s velocity and acceleration, maximum and average values of (b) pressures, (c) shear stresses, and (d) temperatures at
sphere’s surface, for the selected two cases. Case 1 corresponds to = =δ ε1.3, 0.5 and Case 2 to = =δ ε1.1, 1.5, respectively.
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collapse. Although we can find some similarities in bubble shape pro-
gression to previous studies on larger bubbles, we can generally notice
that bubble jetting is much less likely to occur on the considered scale
due to cushioning effects of surface tension on the intensity of the
collapse. Overall, the results show that the mechanical loads on a
spherical particle tend to increase with a sphere-bubble size ratio ε, and
decrease with their distance δ .

The obtained results were further discussed with respect to bacteria
eradication in contaminated water. We identified the bubble emitted
shock wave propagation past the bacterial cell to be the most likely
mechanism for inflicting structural damage, as it exhibits large pressure
peaks in the order of a few hundred MPa, gradients of 100 MPa/μm,
and induces the peak shear loads of a few MPa.
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